Math Amateur
Gold Member
MHB
- 3,920
- 48
I am reading Nicholson: Introduction to Abstract Algebra, Section 6.2 - Algebraic Extensions.
Example 15 on page 282 (see attachment) reads as follows:
---------------------------------------------------------------------------------------------------------------------------------
Example 15.
Let E = \mathbb{Q} ( \sqrt{2} , \sqrt{5} ).
Find [E \ : \ \mathbb{Q} ] , exhibit a \mathbb{Q}-basis of E, and show that E = \mathbb{Q} ( \sqrt{2} + \sqrt{5} ). Then find the minimum polynomial of \sqrt{2} + \sqrt{5} over \mathbb{Q}.
-----------------------------------------------------------------------------------------------------------------------------------In the solution we read:
Solution: We write L = \mathbb{Q} ( \sqrt{2} ) for convenience so that E = L(\sqrt{5}) ... ... etc
... ... ... We claim that X^2 - 5 is the minimal polynomial of \sqrt{5} over L. Because \sqrt{5} and - \sqrt{5} are the only roots of X^2 - 5 in \mathbb{R}, we merely need to show that \sqrt{5} \notin L. ... ... etc
My problem is the following:
How does showing \sqrt{5} \notin L imply that X^2 - 5 is the minimal polynomial of \sqrt{5} over L?Can someone please help with this issue?
Peter
Example 15 on page 282 (see attachment) reads as follows:
---------------------------------------------------------------------------------------------------------------------------------
Example 15.
Let E = \mathbb{Q} ( \sqrt{2} , \sqrt{5} ).
Find [E \ : \ \mathbb{Q} ] , exhibit a \mathbb{Q}-basis of E, and show that E = \mathbb{Q} ( \sqrt{2} + \sqrt{5} ). Then find the minimum polynomial of \sqrt{2} + \sqrt{5} over \mathbb{Q}.
-----------------------------------------------------------------------------------------------------------------------------------In the solution we read:
Solution: We write L = \mathbb{Q} ( \sqrt{2} ) for convenience so that E = L(\sqrt{5}) ... ... etc
... ... ... We claim that X^2 - 5 is the minimal polynomial of \sqrt{5} over L. Because \sqrt{5} and - \sqrt{5} are the only roots of X^2 - 5 in \mathbb{R}, we merely need to show that \sqrt{5} \notin L. ... ... etc
My problem is the following:
How does showing \sqrt{5} \notin L imply that X^2 - 5 is the minimal polynomial of \sqrt{5} over L?Can someone please help with this issue?
Peter