Figuring Out Heat Transfer & Entropy of Steam at 10 MPa

AI Thread Summary
To determine the entropy change and heat transfer for water transitioning from liquid to steam at 10 MPa, steam tables are essential for obtaining the specific entropy values (sfg) and heat transfer per unit mass. The problem allows for assumptions regarding the initial temperature, which can simplify calculations. The focus should be on the vaporization process, utilizing the properties listed in the steam tables. This approach will yield the necessary values for entropy and heat transfer. Accurate application of steam tables is crucial for solving this thermodynamic problem effectively.
Nick Goodson
Messages
7
Reaction score
2
Thread moved from the technical forums to the schoolwork forums
Hello everybody, would somebody please put me on the right track to answering this question?

'Consider water undergoes a heat transfer
at constant pressure of 10 MPa and
changes from liquid to steam. Find the
entropy of the system (sfg) as well as the
heat transfer per unit mass in this
process?'

Is this just looking at steam tables and working per unit mass?

I'd appreciate any help
Thanks
 
Physics news on Phys.org
The problem does not specify initial temperature.
If you are free to assume, you could use steam tables per unit mass for the vaporization process only.
 
  • Like
Likes Nick Goodson
Lnewqban said:
The problem does not specify initial temperature.
If you are free to assume, you could use steam tables per unit mass for the vaporization process only.
Thanks Lnewqban
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top