VinnyCee
- 486
- 0
THE PROBLEM:
The dot product is:
\overrightarrow{x}\,=\,\left[ \begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right]
\overrightarrow{y}\,=\,\left[ \begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_n \end{array} \right]
in \mathbb{R}^n:
\overrightarrow{x}\,\cdot\,\overrightarrow{y}\,=\,x_1\,y_1\,+\,x_2\,y_2\,+\,\ldots\,+\,x_n\,y_n
If the scalar \overrightarrow{x}\,\cdot\,\overrightarrow{y} is equal to zero, the vectors are perpendicular.
Find all vectors in \mathbb{R}^3 that are perpendicular to
\left[ \begin{array}{c} 1 \\ 3 \\ -1 \end{array} \right].
Draw a sketch as well.
MY WORK SO FAR:
\left[ \begin{array}{c} 1 \\ 3 \\ -1 \end{array} \right]\,\cdot\,\left[ \begin{array}{c} x \\ y \\ z \end{array} \right]\,=\,0
x\,+\,3\,y\,-\,z\,=\,0
z\,=\,x\,+\,3\,y
Let s = x and t = y
z\,=\,s\,+\,3\,t
\left[ \begin{array}{c} 1 \\ 3 \\ -1 \end{array} \right]\,\cdot\,\left[ \begin{array}{c} s \\ t \\ s\,+\,3\,t \end{array} \right]\,=\,0
Does the above look right?
The dot product is:
\overrightarrow{x}\,=\,\left[ \begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right]
\overrightarrow{y}\,=\,\left[ \begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_n \end{array} \right]
in \mathbb{R}^n:
\overrightarrow{x}\,\cdot\,\overrightarrow{y}\,=\,x_1\,y_1\,+\,x_2\,y_2\,+\,\ldots\,+\,x_n\,y_n
If the scalar \overrightarrow{x}\,\cdot\,\overrightarrow{y} is equal to zero, the vectors are perpendicular.
Find all vectors in \mathbb{R}^3 that are perpendicular to
\left[ \begin{array}{c} 1 \\ 3 \\ -1 \end{array} \right].
Draw a sketch as well.
MY WORK SO FAR:
\left[ \begin{array}{c} 1 \\ 3 \\ -1 \end{array} \right]\,\cdot\,\left[ \begin{array}{c} x \\ y \\ z \end{array} \right]\,=\,0
x\,+\,3\,y\,-\,z\,=\,0
z\,=\,x\,+\,3\,y
Let s = x and t = y
z\,=\,s\,+\,3\,t
\left[ \begin{array}{c} 1 \\ 3 \\ -1 \end{array} \right]\,\cdot\,\left[ \begin{array}{c} s \\ t \\ s\,+\,3\,t \end{array} \right]\,=\,0
Does the above look right?
Last edited: