Find an equivalent equation involving trig functions

Click For Summary

Homework Help Overview

The discussion revolves around finding an equivalent equation involving trigonometric functions, specifically transforming the expression sin(2x) + 2sin(x) + 2cos(x) into the form A + sin(kx + v) = 0. Participants are exploring various algebraic manipulations and trigonometric identities to achieve this goal.

Discussion Character

  • Exploratory, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • Participants attempt to rewrite the original equation using identities, such as sin(2x) = 2sin(x)cos(x) and expressing cos(x) in terms of sin. Some express uncertainty about the relevance of their manipulations and question how to proceed from certain steps.

Discussion Status

There are multiple attempts to manipulate the equation, with some participants suggesting different approaches, including exponential forms and substitutions. However, there is no explicit consensus on the best path forward, and discussions are ongoing regarding the interpretation of the problem statement.

Contextual Notes

Some participants note the absence of an equal sign in the original problem statement, leading to confusion about the nature of the equation. There are also mentions of potential asymmetries in the solutions being sought.

nickek
Messages
21
Reaction score
1
Homework Statement
Given the equation $$\sin(2x)+2\sin(x)+2\cos(x) = 0$$ find an equivalent equation on the form ##A+\sin(kx + v)=0## (i.e find the values of the parameters A, k and v).
Relevant Equations
$$\sin(2x) = 2\sin(x)\cos(x)$$ $$2\sin(x)+2\cos(x) = 2\sqrt{2}\sin(x + \pi/4)$$
Rewrite the given equation, attempt 1:
##2\sin(x)\cos(x) + 2\sin(x) + 2\cos(x) = 0##
##\sin(x)\cos(x) + \sin(x) + \cos(x) = 0##
##\sin(x)(\cos(x) + 1) + \cos(x) = 0##, naaah, can't get any relevant out from here.

Attempt 2:
##2\sin(x)\cos(x) + 2\sqrt{2}*\sin(x + \pi/4) = 0##
##\sin(x)\cos(x) + \sqrt{2}\sin(x + \pi/4) = 0##, nope, don't know how continue.

I know I can rewrite ##\cos(x)## as ##\sin(\pi/2 - x)##, but I don't see how it should help.
 
Last edited:
Physics news on Phys.org
nickek said:
Homework Statement:: Given the equation sin(2x)+2*sin(x)+2*cos(x), find an equivalent equation on the form A+sin(kx + v)=0 (i.e find the values of the parameters A, k and v).
Relevant Equations:: sin(2x) = 2*sin(x)*cos(x), 2*sin(x)+2*cos(x) = 2*sqrt(2)*sin(x + pi/4).

Rewrite the given equation, attempt 1:
2*sin(x)*cos(x) + 2*sin(x) + 2*cos(x) = 0
sin(x)*cos(x) + sin(x) + cos(x) = 0
sin(x)*(cos(x) + 1) + cos(x) = 0, naaah, can't get any relevant out from here.

Attemt 2:
2*sin(x)*cos(x) + 2*sqrt(2)*sin(x + pi/4) = 0
sin(x)*cos(x) + sqrt(2)*sin(x + pi/4) = 0, nope, don't know how continue.

I know I can rewrite cos(x) as sin(pi/2 - x), but I don't see how it should help.
##\sin(2x) +2\sin(x)+2\cos(x)## isn't an equation. And as a function, it is not of the form ##A+\sin(kx+v)## as you can see here:
https://www.wolframalpha.com/input?i=sin(x)cos(x)+sin(x)+cos(x)+=

Here is explained how you can type formulas on PF: https://www.physicsforums.com/help/latexhelp/
 
  • Like
Likes   Reactions: fresh_42
You could try ##\sin(x)=\dfrac{e^{ix}-e^{-ix}}{2i}## and ##\cos(x)=\dfrac{e^{ix}+e^{-ix}}{2}## to find the zeros.
Or use the Weierstraß substitution ##t=\tan(x/2)## for ##|x|<\pi.##

If we look at the solution
1676731846051.png

then there is an asymmetry which seems as if there will be two different solutions for the triple ##(A,k,v).##
 
  • Like
Likes   Reactions: MatinSAR and nickek
nickek said:
Attempt 2: ##2\sin(x)\cos(x) + 2\sqrt{2}*\sin(x + \pi/4) = 0##
This looks like a good start to me, with this change.
##\sin(2x) + 2\sqrt{2}*\sin(x + \pi/4) = 0##

You didn't show how you got from ##2\sin(x) + 2\cos(x)## to ##2\sqrt 2\sin(x + \pi/4)##, but I assume that you know what you did and where the factor of ##2\sqrt 2## came from.

If you can convert ##A\sin(2x) + B\sin(x + \pi/4)## into an expression like ##C\sin(kx + v)## using the same technique that produced ##2\sqrt 2 \sin(x + \pi/4)##, that should do it for you. It's possible that the constant A is zero, but I haven't worked things out.

BTW, it seems to me that you really aren't working with an equation, but rather, rewriting the expression involving sin(2x), sin(x), and cos(x) into an identically equal expression. But then again, I don't know what the exact wording of the problem is.
 
  • Like
Likes   Reactions: nickek

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K