Find an equivalent equation involving trig functions

AI Thread Summary
The discussion revolves around rewriting the equation sin(2x) + 2sin(x) + 2cos(x) to find an equivalent form A + sin(kx + v) = 0. Initial attempts to simplify the equation using trigonometric identities did not yield satisfactory results. Participants suggested using complex exponentials or the Weierstrass substitution to find zeros. There is a recognition that the equation may not be in the correct form, and further exploration of combining terms could lead to a solution. The conversation highlights the complexity of transforming the equation while maintaining its equivalence.
nickek
Messages
21
Reaction score
1
Homework Statement
Given the equation $$\sin(2x)+2\sin(x)+2\cos(x) = 0$$ find an equivalent equation on the form ##A+\sin(kx + v)=0## (i.e find the values of the parameters A, k and v).
Relevant Equations
$$\sin(2x) = 2\sin(x)\cos(x)$$ $$2\sin(x)+2\cos(x) = 2\sqrt{2}\sin(x + \pi/4)$$
Rewrite the given equation, attempt 1:
##2\sin(x)\cos(x) + 2\sin(x) + 2\cos(x) = 0##
##\sin(x)\cos(x) + \sin(x) + \cos(x) = 0##
##\sin(x)(\cos(x) + 1) + \cos(x) = 0##, naaah, can't get any relevant out from here.

Attempt 2:
##2\sin(x)\cos(x) + 2\sqrt{2}*\sin(x + \pi/4) = 0##
##\sin(x)\cos(x) + \sqrt{2}\sin(x + \pi/4) = 0##, nope, don't know how continue.

I know I can rewrite ##\cos(x)## as ##\sin(\pi/2 - x)##, but I don't see how it should help.
 
Last edited:
Physics news on Phys.org
nickek said:
Homework Statement:: Given the equation sin(2x)+2*sin(x)+2*cos(x), find an equivalent equation on the form A+sin(kx + v)=0 (i.e find the values of the parameters A, k and v).
Relevant Equations:: sin(2x) = 2*sin(x)*cos(x), 2*sin(x)+2*cos(x) = 2*sqrt(2)*sin(x + pi/4).

Rewrite the given equation, attempt 1:
2*sin(x)*cos(x) + 2*sin(x) + 2*cos(x) = 0
sin(x)*cos(x) + sin(x) + cos(x) = 0
sin(x)*(cos(x) + 1) + cos(x) = 0, naaah, can't get any relevant out from here.

Attemt 2:
2*sin(x)*cos(x) + 2*sqrt(2)*sin(x + pi/4) = 0
sin(x)*cos(x) + sqrt(2)*sin(x + pi/4) = 0, nope, don't know how continue.

I know I can rewrite cos(x) as sin(pi/2 - x), but I don't see how it should help.
##\sin(2x) +2\sin(x)+2\cos(x)## isn't an equation. And as a function, it is not of the form ##A+\sin(kx+v)## as you can see here:
https://www.wolframalpha.com/input?i=sin(x)cos(x)+sin(x)+cos(x)+=

Here is explained how you can type formulas on PF: https://www.physicsforums.com/help/latexhelp/
 
You could try ##\sin(x)=\dfrac{e^{ix}-e^{-ix}}{2i}## and ##\cos(x)=\dfrac{e^{ix}+e^{-ix}}{2}## to find the zeros.
Or use the Weierstraß substitution ##t=\tan(x/2)## for ##|x|<\pi.##

If we look at the solution
1676731846051.png

then there is an asymmetry which seems as if there will be two different solutions for the triple ##(A,k,v).##
 
  • Like
Likes MatinSAR and nickek
nickek said:
Attempt 2: ##2\sin(x)\cos(x) + 2\sqrt{2}*\sin(x + \pi/4) = 0##
This looks like a good start to me, with this change.
##\sin(2x) + 2\sqrt{2}*\sin(x + \pi/4) = 0##

You didn't show how you got from ##2\sin(x) + 2\cos(x)## to ##2\sqrt 2\sin(x + \pi/4)##, but I assume that you know what you did and where the factor of ##2\sqrt 2## came from.

If you can convert ##A\sin(2x) + B\sin(x + \pi/4)## into an expression like ##C\sin(kx + v)## using the same technique that produced ##2\sqrt 2 \sin(x + \pi/4)##, that should do it for you. It's possible that the constant A is zero, but I haven't worked things out.

BTW, it seems to me that you really aren't working with an equation, but rather, rewriting the expression involving sin(2x), sin(x), and cos(x) into an identically equal expression. But then again, I don't know what the exact wording of the problem is.
 
Back
Top