Find Critical Numbers for F(x)= x^3-12x^2 - Ash

  • Thread starter Thread starter physics_ash82
  • Start date Start date
  • Tags Tags
    Numbers
physics_ash82
Messages
18
Reaction score
0
Im supposed to find the critical numbers for the function:
F(x)= x^3-12x^2
I think I did it right I just needed some reassurance, I got
F'(x)= 3x^2-24
=3x(x-8)
=3x=0 and x-8=0

so the critcal numbers are x=0 and x=8 I think:shy: I hope someone can tell me if I did this right

Thanks
ash
 
Physics news on Phys.org
yes, correct [save typo F'(x)= 3x^2-24x = 3x(x-8)]
 
Thank you I might need more help later
:wink:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top