MHB Find Direction Angles: Calculate & Understand

  • Thread starter Thread starter brinlin
  • Start date Start date
  • Tags Tags
    Angles Direction
Click For Summary
Direction angles are the angles that a vector makes with each coordinate axis. The length of the vector is calculated as $\sqrt{2 + 4 + 2} = 2\sqrt{2}$. For the x-axis, the length is $\sqrt{2}$, leading to a cosine value of $\frac{1}{2}$. This indicates that the angle with the x-axis can be determined using the inverse cosine function. Similar calculations can be applied to find the angles with the y-axis and z-axis.
brinlin
Messages
12
Reaction score
0
Pre4.PNG
 
Mathematics news on Phys.org
Do you know what "direction angles" are? They are the angles the vector makes with each of the coordinate axes. The length of this vector is $\sqrt{2+ 4+ 2}=\sqrt{8}= 2\sqrt{2}$. That is the length of the hypotenuse of the right triangles the vector makes with each of the axes. The length of the side along the x-axis has length $\sqrt{2}$. The cosine of that angle is $\frac{\sqrt{2}}{2\sqrt{2}}= \frac{1}{2}$. So what is that angle?

Do the other angles the same way.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K