Find Forces Given Air Pressure and Velocity

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Forces
Click For Summary
SUMMARY

This discussion focuses on calculating the forces acting on a support structure due to air pressure and velocity in a fluid dynamics scenario. The forces, denoted as \( R_x \) and \( R_y \), are derived from the pressure and momentum equations applied to the fluid entering and exiting the system. The continuity equation confirms that the velocity remains constant across sections A, B, and Γ, while the integrals for pressure and momentum are evaluated to find the resultant forces. The system is confirmed to be in static equilibrium, where the forces balance out, leading to the equations \( R_x + F_{W_0, x} = 0 \) and \( -R_y + F_{W_0, y} = 0 \).

PREREQUISITES
  • Fluid dynamics principles, specifically the continuity equation.
  • Understanding of pressure forces in fluid mechanics.
  • Knowledge of vector calculus for evaluating integrals in fluid systems.
  • Static equilibrium concepts in mechanics.
NEXT STEPS
  • Study the derivation of the continuity equation in fluid dynamics.
  • Learn about pressure distribution in fluid systems using Bernoulli's equation.
  • Explore vector calculus techniques for evaluating surface integrals in fluid mechanics.
  • Investigate static equilibrium conditions and their applications in engineering structures.
USEFUL FOR

Engineers, physicists, and students studying fluid dynamics, particularly those interested in pressure forces and static equilibrium in mechanical systems.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Air of pressure $p_0$ and velocity $|\overrightarrow{u}_{A}|=|\overrightarrow{u}_{B}|=c$ enters the space $D$ from the sections $A, B$ of surface $S$. If at the orifices the distribution of the pressure and the velocity is uniform and at the exit $\Gamma$ the pressure is equal to the atmospheric one $P_a$, find the forces $R_x, R_y$ acting on the support $\Delta$ (air density $\rho_a$).

View attachment 4420

The solution that I found in my notes is the following:

$$\overrightarrow{F}_{W_0}=-\int_{\partial{W_1}}p\overrightarrow{n}dA-\int_{\partial{W_1}}\rho \overrightarrow{u}(\overrightarrow{u} \cdot \overrightarrow{n})dA$$

$\overrightarrow{F}_{W_0}$ is the force over the solid boundary $\partial_{W_0}$ (square ΑΒΓΔ)

Continuity equation: $$u_{\Gamma}S_{\Gamma}=u_AS_A+u_BS_B \Rightarrow u_{\Gamma}2S=cS+cS \Rightarrow u_{\Gamma}=u_A=u_B=c$$

$$\text{ Section } A : \overrightarrow{n}_A=\hat{i} \ \ , \ \ \overrightarrow{u}_{A}=-c\hat{i} \\ \text{ Section } B : \overrightarrow{n}_B=\frac{\sqrt{2}}{2}(\hat{i}-\hat{j}) \ \ , \ \ \overrightarrow{u}_{B}=c\left (-\frac{\sqrt{2}}{2}(\hat{i}-\hat{j})\right ) \\ \text{ Section } \Gamma : \overrightarrow{n}_{\Gamma}=-\hat{j} \ \ , \ \ \overrightarrow{u}_{\Gamma}=-c\hat{j}$$

$$\overrightarrow{u}_{A} \cdot \overrightarrow{n}_{A}=-c \\ \overrightarrow{u}_{B} \cdot \overrightarrow{n}_{B}=-c \\ \overrightarrow{u}_{\Gamma} \cdot \overrightarrow{n}_{\Gamma}=c$$

$$\int_{\partial{W_1}}p\overrightarrow{n}dA=P_AS\hat{i}+P_BS\frac{\sqrt{2}}{2}(\hat{i}-\hat{j})+P_{\Gamma}2S(-\hat{j})=P_0S\left (\hat{i}+\frac{\sqrt{2}}{2}(\hat{i}-\hat{j})\right )-2P_aS\hat{j}=P_0S\left (1+\frac{\sqrt{2}}{2}\right )\hat{i}-\left (P_0S\frac{\sqrt{2}}{2}+2P_aS\right )\hat{j}$$

$$\int_{\partial{W_1}}\rho \overrightarrow{u}(\overrightarrow{u} \cdot \overrightarrow{n})dA=\rho_a [\overrightarrow{u}_A (\overrightarrow{u}_A \cdot \overrightarrow{n})S_A+\overrightarrow{u}_B (\overrightarrow{u}_B \cdot \overrightarrow{n})S_B+\overrightarrow{u}_{\Gamma} (\overrightarrow{u}_{\Gamma} \cdot \overrightarrow{n})S_{\Gamma}]=\rho_a [-c\hat{i}(-c)S-c\frac{\sqrt{2}}{2}(\hat{i}-\hat{j})(-c)S-c\hat{j}c2S]=\rho_a c^2S\left (\hat{i}+\frac{\sqrt{2}}{2}(\hat{i}-\hat{j})-2\hat{j}\right )=\rho_ac^2S\left (\left (1+\frac{\sqrt{2}}{2}\right )\hat{i}-\left ( \frac{\sqrt{2}}{2}+2\right )\hat{j}\right )$$

$$\overrightarrow{F}_{W_0}=-P_0S\left (1+\frac{\sqrt{2}}{2}\right )\hat{i}+\left (P_0S\frac{\sqrt{2}}{2}+2P_aS\right )\hat{j}-\rho_a c^2S\left (1+\frac{\sqrt{2}}{2}\right )\hat{i}+\rho_a c^2S\left (\frac{\sqrt{2}}{2}+2\right )\hat{j}$$

$$F_{W_0,x}=-\left (P_0+\rho_a c^2\right )S\left (1+\frac{\sqrt{2}}{2}\right )<0 \\ F_{W_0, y}=\left (\left ( P_2\frac{\sqrt{2}}{2}+2P_a\right ) +\rho_ac^2\left (\frac{\sqrt{2}}{2}+2\right )\right )S>0$$

Balance of the construction:

$$R_x+F_{W_0, x}=0 \Rightarrow R_x=-F_{W_0, x}>0 \\ -R_y+F_{W_0, y}=0 \Rightarrow R_y=F_{W_0, y}>0$$

How we have we found that $\overrightarrow{n}_B=\frac{\sqrt{2}}{2}(\hat{i}-\hat{j})$ ?? (Wondering)

Could also explain to me how we have calculated the integrals $\int_{\partial{W_1}}p\overrightarrow{n}dA$ and $\int_{\partial{W_1}}\rho \overrightarrow{u}(\overrightarrow{u}\cdot \overrightarrow{n})dA$ ?? (Wondering)
 

Attachments

  • R_forces.png
    R_forces.png
    5.2 KB · Views: 116
Last edited by a moderator:
Physics news on Phys.org
Why does it stand that $R_x+F_{W_0, x}=0$ and $-R_y+F_{W_0, y}=0$ ?? (Wondering)
 
mathmari said:
Why does it stand that $R_x+F_{W_0, x}=0$ and $-R_y+F_{W_0, y}=0$ ?? (Wondering)

Hey! (Wave)

The wall is fixed and the system presses itself into the top left corner.
That means that $R_x$ and $R_y$ will be exactly as large as needed to counter the forces generated by the fluid.

Put otherwise, the system as a whole is in static equilibrium (what they termed "Balance of the system").
That means:
$$\sum F_x = 0\\
\sum F_y = 0 \\
\sum M = 0$$
(Thinking)
 
I like Serena said:
Hey! (Wave)

The wall is fixed and the system presses itself into the top left corner.
That means that $R_x$ and $R_y$ will be exactly as large as needed to counter the forces generated by the fluid.

Put otherwise, the system as a whole is in static equilibrium (what they termed "Balance of the system").
That means:
$$\sum F_x = 0\\
\sum F_y = 0 \\
\sum M = 0$$
(Thinking)

What is $M$ ?? (Wondering)

Could you explain to me the signs at the equation $-R_y+F_{W_0, y}=0$ ?? (Wondering) Why is at $R_y$ a minus and at $F_{W_0, y}$ a plus?? (Wondering)
 
mathmari said:
What is $M$ ?? (Wondering)

$M$ is the symbol for moments or torques, which make the system rotate. (Nerd)
It's not included in your problem though.

Could you explain to me the signs at the equation $-R_y+F_{W_0, y}=0$ ?? (Wondering) Why is at $R_y$ a minus and at $F_{W_0, y}$ a plus?? (Wondering)

More specifically, static equilibrium is often written as something like:
\begin{aligned}
\overset{+}{\rightarrow} &\sum_i F_{i,x} &=0 \\
+\!\!\uparrow &\sum_i F_{i,y} &=0 \\
\underset+\curvearrowleft &\sum_i M_{i,\text{arbitrary point}}&= 0
\end{aligned}

The arrows indicate which direction we count as plus.
Since the direction of $R_y$ (as it is drawn) is in the opposite direction of the arrow for vertical forces, we give it a minus sign.
Apparently $F_{W_0, y}$ is going in the direction of the arrow (up), although I don't see it in the drawing. (Wasntme)
 
Which force is $F_{W_0, y}$ ?? (Wondering)
 
mathmari said:
Which force is $F_{W_0, y}$ ?? (Wondering)

From the problem statement:
[box=yellow]$\overrightarrow{F}_{W_0}$ is the force over the solid boundary $\partial_{W_0}$ (square ΑΒΓΔ) [/box]

That is, the force $F_{W_0, y}$ is the vertical component of the force that applies to the box due to fluid movements caused by differences in pressure.
 

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
Replies
20
Views
2K