Find Forces Given Air Pressure and Velocity

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Forces
Click For Summary

Discussion Overview

The discussion revolves around calculating the forces acting on a support in a fluid dynamics scenario where air with a given pressure and velocity enters a space from two sections. Participants explore the mathematical formulation of the forces based on pressure and velocity distributions, as well as the conditions for static equilibrium.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a mathematical formulation for the forces acting on the support, including integrals of pressure and velocity.
  • Questions arise about the derivation of the normal vector for section B and the calculation of the integrals involved in the force equations.
  • Several participants inquire about the static equilibrium conditions, specifically the equations relating the reaction forces to the fluid forces.
  • Clarifications are sought regarding the meaning of the moment (M) in the context of static equilibrium and the signs used in the equilibrium equations.
  • Another participant explains that the vertical component of the force due to fluid movement is represented by \(F_{W_0, y}\), which is linked to pressure differences.

Areas of Agreement / Disagreement

Participants express uncertainty about the derivation of certain terms and the interpretation of the equilibrium equations. There is no clear consensus on the specific calculations or the physical interpretations of the forces involved.

Contextual Notes

Participants highlight potential ambiguities in the definitions of forces and the assumptions made in the calculations, particularly regarding the directionality of forces and the interpretation of static equilibrium conditions.

Who May Find This Useful

This discussion may be useful for students or professionals interested in fluid dynamics, static equilibrium analysis, and the mathematical modeling of forces in engineering contexts.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Air of pressure $p_0$ and velocity $|\overrightarrow{u}_{A}|=|\overrightarrow{u}_{B}|=c$ enters the space $D$ from the sections $A, B$ of surface $S$. If at the orifices the distribution of the pressure and the velocity is uniform and at the exit $\Gamma$ the pressure is equal to the atmospheric one $P_a$, find the forces $R_x, R_y$ acting on the support $\Delta$ (air density $\rho_a$).

View attachment 4420

The solution that I found in my notes is the following:

$$\overrightarrow{F}_{W_0}=-\int_{\partial{W_1}}p\overrightarrow{n}dA-\int_{\partial{W_1}}\rho \overrightarrow{u}(\overrightarrow{u} \cdot \overrightarrow{n})dA$$

$\overrightarrow{F}_{W_0}$ is the force over the solid boundary $\partial_{W_0}$ (square ΑΒΓΔ)

Continuity equation: $$u_{\Gamma}S_{\Gamma}=u_AS_A+u_BS_B \Rightarrow u_{\Gamma}2S=cS+cS \Rightarrow u_{\Gamma}=u_A=u_B=c$$

$$\text{ Section } A : \overrightarrow{n}_A=\hat{i} \ \ , \ \ \overrightarrow{u}_{A}=-c\hat{i} \\ \text{ Section } B : \overrightarrow{n}_B=\frac{\sqrt{2}}{2}(\hat{i}-\hat{j}) \ \ , \ \ \overrightarrow{u}_{B}=c\left (-\frac{\sqrt{2}}{2}(\hat{i}-\hat{j})\right ) \\ \text{ Section } \Gamma : \overrightarrow{n}_{\Gamma}=-\hat{j} \ \ , \ \ \overrightarrow{u}_{\Gamma}=-c\hat{j}$$

$$\overrightarrow{u}_{A} \cdot \overrightarrow{n}_{A}=-c \\ \overrightarrow{u}_{B} \cdot \overrightarrow{n}_{B}=-c \\ \overrightarrow{u}_{\Gamma} \cdot \overrightarrow{n}_{\Gamma}=c$$

$$\int_{\partial{W_1}}p\overrightarrow{n}dA=P_AS\hat{i}+P_BS\frac{\sqrt{2}}{2}(\hat{i}-\hat{j})+P_{\Gamma}2S(-\hat{j})=P_0S\left (\hat{i}+\frac{\sqrt{2}}{2}(\hat{i}-\hat{j})\right )-2P_aS\hat{j}=P_0S\left (1+\frac{\sqrt{2}}{2}\right )\hat{i}-\left (P_0S\frac{\sqrt{2}}{2}+2P_aS\right )\hat{j}$$

$$\int_{\partial{W_1}}\rho \overrightarrow{u}(\overrightarrow{u} \cdot \overrightarrow{n})dA=\rho_a [\overrightarrow{u}_A (\overrightarrow{u}_A \cdot \overrightarrow{n})S_A+\overrightarrow{u}_B (\overrightarrow{u}_B \cdot \overrightarrow{n})S_B+\overrightarrow{u}_{\Gamma} (\overrightarrow{u}_{\Gamma} \cdot \overrightarrow{n})S_{\Gamma}]=\rho_a [-c\hat{i}(-c)S-c\frac{\sqrt{2}}{2}(\hat{i}-\hat{j})(-c)S-c\hat{j}c2S]=\rho_a c^2S\left (\hat{i}+\frac{\sqrt{2}}{2}(\hat{i}-\hat{j})-2\hat{j}\right )=\rho_ac^2S\left (\left (1+\frac{\sqrt{2}}{2}\right )\hat{i}-\left ( \frac{\sqrt{2}}{2}+2\right )\hat{j}\right )$$

$$\overrightarrow{F}_{W_0}=-P_0S\left (1+\frac{\sqrt{2}}{2}\right )\hat{i}+\left (P_0S\frac{\sqrt{2}}{2}+2P_aS\right )\hat{j}-\rho_a c^2S\left (1+\frac{\sqrt{2}}{2}\right )\hat{i}+\rho_a c^2S\left (\frac{\sqrt{2}}{2}+2\right )\hat{j}$$

$$F_{W_0,x}=-\left (P_0+\rho_a c^2\right )S\left (1+\frac{\sqrt{2}}{2}\right )<0 \\ F_{W_0, y}=\left (\left ( P_2\frac{\sqrt{2}}{2}+2P_a\right ) +\rho_ac^2\left (\frac{\sqrt{2}}{2}+2\right )\right )S>0$$

Balance of the construction:

$$R_x+F_{W_0, x}=0 \Rightarrow R_x=-F_{W_0, x}>0 \\ -R_y+F_{W_0, y}=0 \Rightarrow R_y=F_{W_0, y}>0$$

How we have we found that $\overrightarrow{n}_B=\frac{\sqrt{2}}{2}(\hat{i}-\hat{j})$ ?? (Wondering)

Could also explain to me how we have calculated the integrals $\int_{\partial{W_1}}p\overrightarrow{n}dA$ and $\int_{\partial{W_1}}\rho \overrightarrow{u}(\overrightarrow{u}\cdot \overrightarrow{n})dA$ ?? (Wondering)
 

Attachments

  • R_forces.png
    R_forces.png
    5.2 KB · Views: 119
Last edited by a moderator:
Physics news on Phys.org
Why does it stand that $R_x+F_{W_0, x}=0$ and $-R_y+F_{W_0, y}=0$ ?? (Wondering)
 
mathmari said:
Why does it stand that $R_x+F_{W_0, x}=0$ and $-R_y+F_{W_0, y}=0$ ?? (Wondering)

Hey! (Wave)

The wall is fixed and the system presses itself into the top left corner.
That means that $R_x$ and $R_y$ will be exactly as large as needed to counter the forces generated by the fluid.

Put otherwise, the system as a whole is in static equilibrium (what they termed "Balance of the system").
That means:
$$\sum F_x = 0\\
\sum F_y = 0 \\
\sum M = 0$$
(Thinking)
 
I like Serena said:
Hey! (Wave)

The wall is fixed and the system presses itself into the top left corner.
That means that $R_x$ and $R_y$ will be exactly as large as needed to counter the forces generated by the fluid.

Put otherwise, the system as a whole is in static equilibrium (what they termed "Balance of the system").
That means:
$$\sum F_x = 0\\
\sum F_y = 0 \\
\sum M = 0$$
(Thinking)

What is $M$ ?? (Wondering)

Could you explain to me the signs at the equation $-R_y+F_{W_0, y}=0$ ?? (Wondering) Why is at $R_y$ a minus and at $F_{W_0, y}$ a plus?? (Wondering)
 
mathmari said:
What is $M$ ?? (Wondering)

$M$ is the symbol for moments or torques, which make the system rotate. (Nerd)
It's not included in your problem though.

Could you explain to me the signs at the equation $-R_y+F_{W_0, y}=0$ ?? (Wondering) Why is at $R_y$ a minus and at $F_{W_0, y}$ a plus?? (Wondering)

More specifically, static equilibrium is often written as something like:
\begin{aligned}
\overset{+}{\rightarrow} &\sum_i F_{i,x} &=0 \\
+\!\!\uparrow &\sum_i F_{i,y} &=0 \\
\underset+\curvearrowleft &\sum_i M_{i,\text{arbitrary point}}&= 0
\end{aligned}

The arrows indicate which direction we count as plus.
Since the direction of $R_y$ (as it is drawn) is in the opposite direction of the arrow for vertical forces, we give it a minus sign.
Apparently $F_{W_0, y}$ is going in the direction of the arrow (up), although I don't see it in the drawing. (Wasntme)
 
Which force is $F_{W_0, y}$ ?? (Wondering)
 
mathmari said:
Which force is $F_{W_0, y}$ ?? (Wondering)

From the problem statement:
[box=yellow]$\overrightarrow{F}_{W_0}$ is the force over the solid boundary $\partial_{W_0}$ (square ΑΒΓΔ) [/box]

That is, the force $F_{W_0, y}$ is the vertical component of the force that applies to the box due to fluid movements caused by differences in pressure.
 

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
Replies
20
Views
2K