MHB Find $\frac{a}{b}$ in the Circle of Balls

  • Thread starter Thread starter maxkor
  • Start date Start date
  • Tags Tags
    Balls Circle
maxkor
Messages
79
Reaction score
0

Attachments

  • tapr420.gif
    tapr420.gif
    5.1 KB · Views: 102
Mathematics news on Phys.org
maxkor said:
How find $\frac{a}{b}$

Hi maxkor! (Smile)

We ask that our users show their progress (work thus far or thoughts on how to begin) when posting questions. This way our helpers can see where you are stuck or may be going astray and will be able to post the best help possible without potentially making a suggestion which you have already tried, which would waste your time and that of the helper.

Can you post what you have done so far?
 
View attachment 4533
Let 1/2b radius of the big circle, let r radius of the smaller circle
Let $c=1/2a=1/2b−r,
b=2c+2r,
a=2c.$
So $\frac{a}{b}=\frac{2c}{2c+2r}=\frac{c}{c+r}$
Small circles respectively tangential to the large circles so
$z=c+2r,t=a−r=2c−r$

Is this right?
 

Attachments

  • rysunek113891.png
    rysunek113891.png
    881 bytes · Views: 98

Use Pythagoras in the triangles $CXY$, $DXY$ (where $Y$ is the centre of one of the footballs) to find two expressions for $XY^2$ in terms of $a$, $b$ and $r$. Putting those expressions equal to each other will give you an equation connecting $a$, $b$ and $r$.

You already know that $r = \frac12(b-a)$ (from your equation $c = \frac12a = \frac12b-r$). Substitute that value of $r$ into your equation, and it will give you the connection between $a$ and $b$.
 

Attachments

  • balls.jpg
    balls.jpg
    7.9 KB · Views: 102
Last edited:
Is $\frac{a}{b}=\frac{\sqrt{2}}{2}$ correct answer?
 
maxkor said:
Is $\frac{a}{b}=\frac{\sqrt{2}}{2}$ correct answer?
Yes! (Happy)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
10
Views
2K
Replies
2
Views
2K
Replies
10
Views
2K
Replies
6
Views
1K
Replies
3
Views
1K
Replies
10
Views
1K
Back
Top