MHB Find $\frac{a}{b}$ in the Circle of Balls

  • Thread starter Thread starter maxkor
  • Start date Start date
  • Tags Tags
    Balls Circle
AI Thread Summary
The discussion focuses on finding the ratio $\frac{a}{b}$ in a geometric problem involving circles. Users are encouraged to share their progress to receive targeted help. Key equations are established, including $c = \frac{1}{2}a = \frac{1}{2}b - r$ and $b = 2c + 2r$. The connection between $a$, $b$, and $r$ is derived using Pythagorean theorem applications in specific triangles. The final answer proposed for the ratio $\frac{a}{b}$ is confirmed to be $\frac{\sqrt{2}}{2}$.
maxkor
Messages
79
Reaction score
0

Attachments

  • tapr420.gif
    tapr420.gif
    5.1 KB · Views: 103
Mathematics news on Phys.org
maxkor said:
How find $\frac{a}{b}$

Hi maxkor! (Smile)

We ask that our users show their progress (work thus far or thoughts on how to begin) when posting questions. This way our helpers can see where you are stuck or may be going astray and will be able to post the best help possible without potentially making a suggestion which you have already tried, which would waste your time and that of the helper.

Can you post what you have done so far?
 
View attachment 4533
Let 1/2b radius of the big circle, let r radius of the smaller circle
Let $c=1/2a=1/2b−r,
b=2c+2r,
a=2c.$
So $\frac{a}{b}=\frac{2c}{2c+2r}=\frac{c}{c+r}$
Small circles respectively tangential to the large circles so
$z=c+2r,t=a−r=2c−r$

Is this right?
 

Attachments

  • rysunek113891.png
    rysunek113891.png
    881 bytes · Views: 100

Use Pythagoras in the triangles $CXY$, $DXY$ (where $Y$ is the centre of one of the footballs) to find two expressions for $XY^2$ in terms of $a$, $b$ and $r$. Putting those expressions equal to each other will give you an equation connecting $a$, $b$ and $r$.

You already know that $r = \frac12(b-a)$ (from your equation $c = \frac12a = \frac12b-r$). Substitute that value of $r$ into your equation, and it will give you the connection between $a$ and $b$.
 

Attachments

  • balls.jpg
    balls.jpg
    7.9 KB · Views: 103
Last edited:
Is $\frac{a}{b}=\frac{\sqrt{2}}{2}$ correct answer?
 
maxkor said:
Is $\frac{a}{b}=\frac{\sqrt{2}}{2}$ correct answer?
Yes! (Happy)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
10
Views
2K
Replies
2
Views
2K
Replies
10
Views
2K
Replies
6
Views
1K
Replies
3
Views
1K
Replies
10
Views
1K
Back
Top