Find in the form, ##x+iy## in the given complex number problem

chwala
Gold Member
Messages
2,825
Reaction score
413
Homework Statement
Find, in the form ##x+iy##, the complex numbers given in the polar coordinate form by;

##z=2\left[\cos \dfrac{3π}{4} + i \sin \dfrac{3π}{4}\right]##
Relevant Equations
complex numbers
This is the question as it appears on the pdf. copy;

1682349943342.png


##z=2\left[\cos \dfrac{3π}{4} + i \sin \dfrac{3π}{4}\right]##

My approach;

##\dfrac{3π}{4}=135^0##

##\tan 135^0=-\tan 45^0=\dfrac{-\sqrt{2}}{\sqrt{2}}##

therefore,

##z=-\sqrt{2}+\sqrt{2}i##

There may be a better approach.
 
Physics news on Phys.org
It should not be necessary to convert from radians to degrees. One should know <br /> \begin{split}<br /> \cos 0 &amp;= \sin \frac \pi 2 = 1 \\<br /> \cos \frac \pi 6 &amp;= \sin \frac \pi 3 = \frac{\sqrt{3}}2 \\ <br /> \cos \frac \pi 4 &amp;= \sin \frac \pi 4 = \frac 1{\sqrt{2}} \\<br /> \cos \frac \pi 3 &amp;= \sin \frac \pi 6 = \frac 12 \\<br /> \cos \frac \pi 2 &amp;= \sin 0 = 0 \end{split} These, together with basic identities such as the angle sum and difference formulae, suffice to answer these questions.
 
chwala said:
##z=2\left[\cos \dfrac{3π}{4} + i \sin \dfrac{3π}{4}\right]##
Expanding gives ##z=2\cos (\frac{3π}{4}) + 2 i \sin (\frac{3π}{4})##.

So it’s simply a case of matching the real and imaginary parts:
##x = 2\cos ( \frac{3π}{4})##
##y = 2 \sin ( \frac{3π}{4})##

No need to use ‘##\tan##’. And as already noted by @pasmith, it’s worth getting used to working in radians.

A couple of useful relationships are
##cos(\frac π2 + θ) = - sinθ## and
##sin(\frac π2 + θ) = cos(θ)##.
For example, using the first relationship tells you ##\cos (\frac{3π}{4}) = -sin ( \frac π4)##.
 
  • Like
Likes WWGD and chwala
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top