Find Min Value of $(s-a)^3+(s-b)^3+(s-c)^3$ for $\triangle ABC$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Minimum Value
Click For Summary
SUMMARY

The minimum value of the expression $(s-a)^3+(s-b)^3+(s-c)^3$ for triangle $\triangle ABC$ with side lengths $a$, $b$, and $c$, where $s=\frac{a+b+c}{2}$ and the area of the triangle equals 1, has been discussed. The solution provided indicates that the problem can be approached using properties of triangle inequalities and optimization techniques. The conclusion emphasizes that the minimum occurs under specific conditions related to the triangle's dimensions.

PREREQUISITES
  • Understanding of triangle properties and inequalities
  • Familiarity with Heron's formula for area calculation
  • Basic knowledge of calculus for optimization techniques
  • Concept of semi-perimeter in triangles
NEXT STEPS
  • Explore Heron's formula for calculating the area of triangles
  • Study optimization techniques in calculus
  • Investigate properties of symmetric functions in algebra
  • Learn about the implications of triangle inequalities on side lengths
USEFUL FOR

Mathematicians, geometry enthusiasts, and students studying optimization problems in triangle geometry.

Albert1
Messages
1,221
Reaction score
0
$a,b,c$ are lengths of $\triangle ABC$

if:

$(1) :s=\dfrac {a+b+c}{2}$, and

$(2) :$ the area of $\triangle ABC=1$

find the minimum value of $(s-a)^3+(s-b)^3+(s-c)^3$
 
Physics news on Phys.org
My solution:

Applying the AM-GM inequality on the sum:
$(s-a)^3+(s-b)^3+(s-c)^3 \ge 3(s-a)(s-b)(s-c)\;\;\;(1)$
Using Herons formula (with area $A = 1$):
$\frac{1}{s}=(s-a)(s-b)(s-c)$
Inserting in $(1)$: $(s-a)^3+(s-b)^3+(s-c)^3 \ge \frac{3}{s}$The minimum of the sum is obtained, when $s = \frac{a+b+c}{2}$ is largest. Since the area of the triangle is fixed and $s$ is symmetric in $a,b, c$, it will occur when $a=b=c$, thus $s = \frac{3a}{2}$. Using Herons formula for this $s$- value yields:
$A = 1 = \frac{\sqrt{3}}{4}a^2 \Rightarrow a = \frac{2}{\sqrt[4]{3}}$,

and thus the minimum of the sum $(s-a)^3+(s-b)^3+(s-c)^3$ is:
\[\frac{3}{s}=\frac{2}{a}=2\cdot \frac{\sqrt[4]{3}}{2}=\sqrt[4]{3}.\]
 
Last edited:
lfdahl said:
My solution:

Applying the AM-GM inequality on the sum:
$(s-a)^3+(s-b)^3+(s-c)^3 \ge 3(s-a)(s-b)(s-c)\;\;\;(1)$
Using Herons formula (with area $A = 1$):
$\frac{1}{s}=(s-a)(s-b)(s-c)$
Inserting in $(1)$: $(s-a)^3+(s-b)^3+(s-c)^3 \ge \frac{3}{s}$The minimum of the sum is obtained, when $s = \frac{a+b+c}{2}$ is largest. Since the area of the triangle is fixed and $s$ is symmetric in $a,b, c$, it will occur when $a=b=c$, thus $s = \frac{3a}{2}$. Using Herons formula for this $s$- value yields:
$A = 1 = \frac{\sqrt{3}}{4}a^2 \Rightarrow a = \frac{2}{\sqrt[4]{3}}$,

and thus the minimum of the sum $(s-a)^3+(s-b)^3+(s-c)^3$ is:
\[\frac{3}{s}=\frac{2}{a}=2\cdot \frac{\sqrt[4]{3}}{2}=\sqrt[4]{3}.\]
nice solution !
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K