MHB Find Min Value of $(s-a)^3+(s-b)^3+(s-c)^3$ for $\triangle ABC$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Minimum Value
Click For Summary
The problem involves finding the minimum value of the expression \((s-a)^3+(s-b)^3+(s-c)^3\) for a triangle ABC with side lengths \(a\), \(b\), and \(c\), where \(s\) is the semi-perimeter defined as \(s=\frac{a+b+c}{2}\) and the area of the triangle is 1. The discussion highlights various approaches to derive the minimum value, emphasizing the relationship between the triangle's dimensions and its area. Several participants share their solutions and insights, indicating a collaborative effort to tackle the problem. The consensus points towards a specific minimum value achieved under certain conditions. The thread concludes with expressions of appreciation for the solutions shared.
Albert1
Messages
1,221
Reaction score
0
$a,b,c$ are lengths of $\triangle ABC$

if:

$(1) :s=\dfrac {a+b+c}{2}$, and

$(2) :$ the area of $\triangle ABC=1$

find the minimum value of $(s-a)^3+(s-b)^3+(s-c)^3$
 
Mathematics news on Phys.org
My solution:

Applying the AM-GM inequality on the sum:
$(s-a)^3+(s-b)^3+(s-c)^3 \ge 3(s-a)(s-b)(s-c)\;\;\;(1)$
Using Herons formula (with area $A = 1$):
$\frac{1}{s}=(s-a)(s-b)(s-c)$
Inserting in $(1)$: $(s-a)^3+(s-b)^3+(s-c)^3 \ge \frac{3}{s}$The minimum of the sum is obtained, when $s = \frac{a+b+c}{2}$ is largest. Since the area of the triangle is fixed and $s$ is symmetric in $a,b, c$, it will occur when $a=b=c$, thus $s = \frac{3a}{2}$. Using Herons formula for this $s$- value yields:
$A = 1 = \frac{\sqrt{3}}{4}a^2 \Rightarrow a = \frac{2}{\sqrt[4]{3}}$,

and thus the minimum of the sum $(s-a)^3+(s-b)^3+(s-c)^3$ is:
\[\frac{3}{s}=\frac{2}{a}=2\cdot \frac{\sqrt[4]{3}}{2}=\sqrt[4]{3}.\]
 
Last edited:
lfdahl said:
My solution:

Applying the AM-GM inequality on the sum:
$(s-a)^3+(s-b)^3+(s-c)^3 \ge 3(s-a)(s-b)(s-c)\;\;\;(1)$
Using Herons formula (with area $A = 1$):
$\frac{1}{s}=(s-a)(s-b)(s-c)$
Inserting in $(1)$: $(s-a)^3+(s-b)^3+(s-c)^3 \ge \frac{3}{s}$The minimum of the sum is obtained, when $s = \frac{a+b+c}{2}$ is largest. Since the area of the triangle is fixed and $s$ is symmetric in $a,b, c$, it will occur when $a=b=c$, thus $s = \frac{3a}{2}$. Using Herons formula for this $s$- value yields:
$A = 1 = \frac{\sqrt{3}}{4}a^2 \Rightarrow a = \frac{2}{\sqrt[4]{3}}$,

and thus the minimum of the sum $(s-a)^3+(s-b)^3+(s-c)^3$ is:
\[\frac{3}{s}=\frac{2}{a}=2\cdot \frac{\sqrt[4]{3}}{2}=\sqrt[4]{3}.\]
nice solution !