MHB Find Min Value of $(s-a)^3+(s-b)^3+(s-c)^3$ for $\triangle ABC$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Minimum Value
Albert1
Messages
1,221
Reaction score
0
$a,b,c$ are lengths of $\triangle ABC$

if:

$(1) :s=\dfrac {a+b+c}{2}$, and

$(2) :$ the area of $\triangle ABC=1$

find the minimum value of $(s-a)^3+(s-b)^3+(s-c)^3$
 
Mathematics news on Phys.org
My solution:

Applying the AM-GM inequality on the sum:
$(s-a)^3+(s-b)^3+(s-c)^3 \ge 3(s-a)(s-b)(s-c)\;\;\;(1)$
Using Herons formula (with area $A = 1$):
$\frac{1}{s}=(s-a)(s-b)(s-c)$
Inserting in $(1)$: $(s-a)^3+(s-b)^3+(s-c)^3 \ge \frac{3}{s}$The minimum of the sum is obtained, when $s = \frac{a+b+c}{2}$ is largest. Since the area of the triangle is fixed and $s$ is symmetric in $a,b, c$, it will occur when $a=b=c$, thus $s = \frac{3a}{2}$. Using Herons formula for this $s$- value yields:
$A = 1 = \frac{\sqrt{3}}{4}a^2 \Rightarrow a = \frac{2}{\sqrt[4]{3}}$,

and thus the minimum of the sum $(s-a)^3+(s-b)^3+(s-c)^3$ is:
\[\frac{3}{s}=\frac{2}{a}=2\cdot \frac{\sqrt[4]{3}}{2}=\sqrt[4]{3}.\]
 
Last edited:
lfdahl said:
My solution:

Applying the AM-GM inequality on the sum:
$(s-a)^3+(s-b)^3+(s-c)^3 \ge 3(s-a)(s-b)(s-c)\;\;\;(1)$
Using Herons formula (with area $A = 1$):
$\frac{1}{s}=(s-a)(s-b)(s-c)$
Inserting in $(1)$: $(s-a)^3+(s-b)^3+(s-c)^3 \ge \frac{3}{s}$The minimum of the sum is obtained, when $s = \frac{a+b+c}{2}$ is largest. Since the area of the triangle is fixed and $s$ is symmetric in $a,b, c$, it will occur when $a=b=c$, thus $s = \frac{3a}{2}$. Using Herons formula for this $s$- value yields:
$A = 1 = \frac{\sqrt{3}}{4}a^2 \Rightarrow a = \frac{2}{\sqrt[4]{3}}$,

and thus the minimum of the sum $(s-a)^3+(s-b)^3+(s-c)^3$ is:
\[\frac{3}{s}=\frac{2}{a}=2\cdot \frac{\sqrt[4]{3}}{2}=\sqrt[4]{3}.\]
nice solution !
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top