MHB Find Tangent Lines Through Origin to a Circle

Click For Summary
To find the equations of tangents to the circle defined by x^2+y^2-6x-2y+9=0 through the origin, the family of lines is represented as y=mx. By substituting y into the circle's equation, a quadratic in x is formed, leading to the condition that the discriminant must equal zero for tangency. The solutions for m yield two tangent lines: y=0 and y=3/4x. The points of contact for these tangents are (3,0) and (12/5, 9/5), respectively.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

How to find equations of tangent to a circle?


Find the equations of tangents to

x^2+y^2-6x-2y+9=0

through the origin. Also find their respective points of contact.

thanks

I have posted a link there to this thread so the OP can see my work.
 
Mathematics news on Phys.org
Hello Princess,

We are given the equation of the circle:

$$x^2+y^2-6x-2y+9=0$$

The family of lines through the origin is given by:

$$y=mx$$ where $$m\in\mathbb{R}$$

Substituting for $y$, we obtain the following quadratic in $x$:

$$x^2+(mx)^2-6x-2(mx)+9=0$$

Arranging in standard form, we have:

$$\left(m^2+1 \right)x^2-2(3+m)x+9=0$$

Since the line $y=mx$ is tangent to the circle, the discriminant must be zero:

$$\left(-2(3+m) \right)^2-4\left(m^2+1 \right)(9)=0$$

$$9+6m+m^2-9m^2-9=0$$

$$8m^2-6m=0$$

$$m(4m-3)=0$$

$$m=0,\,\frac{3}{4}$$

Thus, the tangent lines are:

$$y=0$$

$$y=\frac{3}{4}x$$

Here is a plot of the circle and the two tangent lines:

View attachment 1704

To find the contact points, we will substitute for $y$ into the circle:

i) $$y=0$$

$$x^2+0^2-6x-2(0)+9=0$$

$$(x-3)^2=0$$

$$x=3$$

This contact point is $$(3,0)$$.

ii) $$y=\frac{3}{4}x$$

$$x^2+\left(\frac{3}{4}x \right)^2-6x-2\left(\frac{3}{4}x \right)+9=0$$

$$\frac{25}{16}x^2-\frac{15}{2}x+9=0$$

$$25x^2-120x+144=0$$

$$(5x-12)^2=0$$

$$x=\frac{12}{5}\implies y=\frac{9}{5}$$

This contact point is $$\left(\frac{12}{5},\frac{9}{5} \right)$$.
 

Attachments

  • princess.jpg
    princess.jpg
    9.9 KB · Views: 88

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K