Find the center of mass of a uniform semicircular plate of radius R

M}{\pi*R^2}$$$$dm = M*\frac{d\theta}{\pi}$$$$r = R(cos(\theta)\vec i + sin(\theta)\vec j)$$$$rcm = \frac{2*R}{\pi}\vec j$$In summary, the equation for finding the center of mass for a circular arc is not correct.f
  • #1
358
28
Homework Statement
Find the center of mass of a uniform this semicircular plate of radius R. Let the origin be at the center of the semicircle, the plate arc from the +x axis to the -x axis, and the z axis be perpendicular to the plate.
Relevant Equations
##rcm = \frac 1 M*\int(r*dm)##
$$rcm = \frac{1}{M}\int_0^\pi(rdm)$$
$$dm = \sigma{dA}$$
$$dA = (\pi*R^2)*\frac{d\theta}{2\pi}$$
$$\sigma = \frac{M}{\frac{\pi*R^2}{2}}$$
$$dm = M*\frac{d\theta}{\pi}$$
$$r = R(cos(\theta)\vec i + sin(\theta)\vec j)$$
$$rcm = \int_0^\pi{\frac{R}{\pi}(cos(\theta)\vec i + sin(\theta)\vec j)} = \frac{2*R}{\pi}\vec j$$

Where did I go wrong?
 
Last edited:
  • #2
Relevant Equations:: ##rcm = \frac 1 M*\int(r*dm)##
Where did I go wrong?
Right there. It is not ##\int r.dm##.
 
  • #4
  • #5
Read the text there carefully. The r in that formula is a position vector, (x, y, z). So the equation becomes ##(x_{cm}, y_{cm}, z_{cm})=\frac 1M\int(x,y,z).dm##.
That works because all the x are parallel. The r in your usage are not all parallel.
Yes, so ##\vec r = R(cos(\theta)\vec i + sin(\theta)\vec j)##
I meant ##\vec r_{cm} = \frac 1 M*\int(\vec r*dm)##
What's the problem?
 
  • #6
Yes, so ##\vec r = R(cos(\theta)\vec i + sin(\theta)\vec j)##
That's only true of a point on the circumference, so you have found the mass centre of a semicircular arc.
 
  • #7
That's only true of a point on the circumference, so you have found the mass centre of a semicircular arc.
Ah, I see. This doesn't work either

$$\sigma = \frac{2M}{\pi*R^2}$$
$$dM = \sigma dA$$
$$dA = \pi ydy$$
$$y_{cm} = \frac{1}{M}\int ydM = \frac{\sigma*\pi}{M}\int{y^2}{dy} = 2MR/3$$
 
Last edited:

Suggested for: Find the center of mass of a uniform semicircular plate of radius R

Back
Top