Find the change in entropy for an ideal gas undergoing a reversible process

Click For Summary

Homework Help Overview

The discussion revolves around calculating the change in entropy for an ideal gas undergoing a reversible process, situated within the context of thermodynamics.

Discussion Character

  • Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • The original poster attempts to derive the change in entropy using thermodynamic equations and integrals related to temperature and volume. They express uncertainty about their approach and seek validation.

Discussion Status

Some participants provide feedback on the original poster's approach, noting the need for a more general expression for internal energy and pointing out missing factors in the equations presented. The conversation reflects an ongoing exploration of the topic without reaching a consensus.

Contextual Notes

Participants highlight the lack of specificity regarding the type of ideal gas and the necessity for general expressions in the context of the problem.

mcas
Messages
22
Reaction score
5
Homework Statement
An ideal gad had a temperature ##T_1## and volume ##V_1##. As a result of a reversible process, these quantities changed to ##T_2## and ##V_2##. Find the change in entropy.
Relevant Equations
##pV=nRT##
##\delta Q = TdS##
##dU = \delta Q + \delta W##
##U = \frac{3}{2}kT##
We know that
$$dU=\delta Q + \delta W$$
$$dU = TdS - pdV$$
So from this:
$$dS = \frac{1}{T}dU + \frac{1}{T}pdV \ (*)$$
For an ideal gas:
$$dU = \frac{3}{2}nkdT$$
Plugging that into (*) and also from ##p=\frac{nRT}{V}## we get:
$$S = \frac{3}{2}nk \int^{T_2}_{T_1} \frac{1}{T}dT + R\int^{V_2}_{V_1} \frac{1}{V}dV$$

And so on...

Is this the correct approach to solve this problem? I'm not really sure because I'm still new to thermodynamics.
 
Physics news on Phys.org
Your approach looks good. A couple of things, though.

mcas said:
##U = \frac{3}{2}kT##
This equation is for a monatomic ideal gas and it's missing a factor of ##N## (the number of molecules). But the question does not specify that the gas is monatomic. So, you'll need a more general expression for ##U## (usually expressed in terms of the number of moles ##n##, the molar heat capacity at constant volume, ##C_V##, and ##T##).

$$S = \frac{3}{2}nk \int^{T_2}_{T_1} \frac{1}{T}dT + R\int^{V_2}_{V_1} \frac{1}{V}dV$$
The first term should be corrected according to the remarks above. The second term is missing a factor. Can you spot it?
 
  • Like
Likes   Reactions: etotheipi and mcas
TSny said:
So, you'll need a more general expression for ##U## (usually expressed in terms of the number of moles ##n##, the molar heat capacity at constant volume, ##C_V##, and ##T##).
Ok, thank you. I think I know which one :smile:

TSny said:
The first term should be corrected according to the remarks above. The second term is missing a factor. Can you spot it?
I missed ##n##, right?

Thank you, this means very much! Now I have the motivation to do more problems 😁
 
  • Like
Likes   Reactions: etotheipi and TSny
mcas said:
I missed ##n##, right?
Yes.
 
  • Like
Likes   Reactions: mcas

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
950
Replies
14
Views
1K
Replies
10
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K