Find the derivative of given function and hence find its integral

Click For Summary

Homework Help Overview

The discussion revolves around finding the derivative and integral of the function \( y = x^2 \ln x - x \). Participants are exploring the differentiation and integration processes involved in this function, particularly focusing on the implications of the derivative and the subsequent integral calculations.

Discussion Character

  • Exploratory, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • Participants discuss the correctness of the derivative \( \frac{dy}{dx} = 2x \ln x + x - 1 \) and its implications for integration. There are attempts to clarify the relationship between the left-hand side and right-hand side of the integral equations. Some participants question the steps taken in the integration process and suggest alternative approaches to reach the integral of \( x \ln x \).

Discussion Status

The discussion is active, with participants providing feedback on each other's reasoning and calculations. Some have offered guidance on how to approach the integration of \( 2x \ln x \) and the implications of the constant of integration. Multiple interpretations of the integration steps are being explored, indicating a productive exchange of ideas.

Contextual Notes

Participants are navigating through the constraints of the problem, including the need to evaluate definite integrals from 1 to 2 and the importance of correctly applying integration techniques. There is an acknowledgment of potential pitfalls in the integration process, particularly regarding the subtraction of terms.

chwala
Gold Member
Messages
2,832
Reaction score
426
Homework Statement
find the derivative of ##y=x^2ln x-x## hence evaluate ##\int_1^2 xln x \ dx##
Relevant Equations
differentiation
##y=x^2ln x-x##
##\frac {dy}{dx}=2x ln x+x-1##
##\int [2xln x+x-1]\,dx##=##x^2ln x-x##, since ##\int -1 dx= -x##
it follows that,
##\int [2x ln x +x]\,dx##=##x^2 ln x##
##\int 2x ln x \,dx = x^2ln x##+##\int x\,dx##
##\int_1^2 xln x\,dx =\frac {x^2ln x}{2}##+##\frac{x^2}{4}##=##2ln2+1-0.25##
 
Last edited:
Physics news on Phys.org
So from your last formula
\int_1^2 LHS\ dx = \int_1^2 RHS\ dx
 
Hello Chwala,

$$\frac {dy}{dx}=2x \ln x+x-1$$was correct. I think you had an equation following that looking like $$x \ln x = {1\over 2} \frac {dy}{dx} - {x\over 2} + {1\over 2} $$which was correct as well. And prompted @mitochan to 'hint' $$\int_1^2 LHS\ dx = \int_1^2 RHS\ dx\ .$$ As the exercise text suggests.

Your $$\int [2x\ln x+x]\,dx =x^2\ln x$$ is still fine.

But then you fall into a trap. You want to subtract ##\int x## on both sides, so you should get $$\int [2x\ln x]\,dx =x^2\ln x- \int x$$

Other than that, bravo !

##\ ##
 
  • Like
Likes   Reactions: chwala
For fun and profit and as a nice extension of this exercise (but I understand those who consider it showing off :wink: ) :

Note that you could have done a coarse check on the answer with the help of mr. Taylor:

The Taylor series of ##\ln(1+\epsilon)## is pretty common knowledge:$$
\ln(1+\epsilon) = \epsilon - {\epsilon^2\over 2} + {\epsilon^3\over 3} - \ ... $$ so in the range ##\ [1,2]\ ## we have for ##\ \epsilon = x-1 \ ## that ##\ x\ln x < x(x-1) \ ## and therefore $$
\int_1^2 x\ln x \;dx < \int_1^2 x(x-1) \;dx =
\tfrac{1}{3} x^3- \tfrac {1}{2} x^2 \; \Bigg |_1^2 = {7\over 3 } - {3\over 2} = {5\over 6} $$ whereas your answer is clearly ##>1## ...

1614874673850.png

##\ ##
 
BvU said:
Hello Chwala,

$$\frac {dy}{dx}=2x \ln x+x-1$$was correct. I think you had an equation following that looking like $$x \ln x = {1\over 2} \frac {dy}{dx} - {x\over 2} + {1\over 2} $$which was correct as well. And prompted @mitochan to 'hint' $$\int_1^2 LHS\ dx = \int_1^2 RHS\ dx\ .$$ As the exercise text suggests.

Your $$\int [2x\ln x+x]\,dx =x^2\ln x$$ is still fine.

But then you fall into a trap. You want to subtract ##\int x## on both sides, so you should get $$\int [2x\ln x]\,dx =x^2\ln x- \int x$$

Other than that, bravo !

##\ ##

aaargh! i see that, $$x \ln x = {1\over 2} \frac {dy}{dx} - {x\over 2} + {1\over 2} $$
$$\int_1^2 LHS\ dx = \int_1^2 RHS\ dx\ .$$
##\int_1^2 xln x \,dx=\int_1^2 [\frac {dy}{dx} - {x\over 2} + {1\over 2}] dx##
=
BvU said:
Hello Chwala,

$$\frac {dy}{dx}=2x \ln x+x-1$$was correct. I think you had an equation following that looking like $$x \ln x = {1\over 2} \frac {dy}{dx} - {x\over 2} + {1\over 2} $$which was correct as well. And prompted @mitochan to 'hint' $$\int_1^2 LHS\ dx = \int_1^2 RHS\ dx\ .$$ As the exercise text suggests.

Your $$\int [2x\ln x+x]\,dx =x^2\ln x$$ is still fine.

But then you fall into a trap. You want to subtract ##\int x## on both sides, so you should get $$\int [2x\ln x]\,dx =x^2\ln x- \int x$$

Other than that, bravo !

##\ ##
let me correct that...
 
##y=x^2ln x-x##
##\frac {dy}{dx}=2x ln x+x-1##
##\int [2xln x+x-1]\,dx##=##x^2ln x-x##, since ##\int -1 dx= -x##
it follows that,
##\int [2x ln x +x]\,dx##=##x^2 ln x##
##\int 2x ln x \,dx = x^2ln x##-##\int x\,dx##
##\int_1^2 xln x\,dx =\frac {x^2ln x}{2}##-##\frac{x^2}{4}##=##2ln2-1+0.25##=##2ln2-0.75##...1

alternatively as you had suggested,

##\frac {dy}{dx}-x +1=2x ln x##
##\frac {1}{2}\frac {dy}{dx}-\frac {1}{2}x +\frac {1}{2}=xln x##
##\int x ln x\,dx##=## \int [ \frac {1}{2}\frac {dy}{dx}-\frac {1}{2}x +\frac {1}{2}\,]dx##
##\int_1^2 x ln x\,dx##=## \int_1^2 [ \frac {1}{2}\frac {dy}{dx}-\frac {1}{2}x +\frac {1}{2}\,]dx##
##\int_1^2 x ln x\,dx##=## \frac {1}{2}y##-##\frac {1}{4}x^2## +##\frac {1}{2}x## with limits ##x=1## and ##x=2## in mind, it follows that,
##\int_1^2 x ln x\,dx##=## \frac {1}{2}[x^2ln x-x]##-##\frac {1}{4}x^2## +##\frac {1}{2}x##
##\int_1^2 x ln x\,dx##=##\frac {1}{2}x^2ln x##-##\frac {1}{4}x^2##...which will realize the same result as equation 1 above by substitution of limits ##x=1## and ##x=2##.
 
chwala said:
##y=x^2ln x-x##
##\frac {dy}{dx}=2x ln x+x-1##
##\int [2xln x+x-1]\,dx=x^2ln x-x## .
Since ##\int -1 dx= -x## ,
it follows that, ##\int [2x ln x +x]\,dx=x^2 ln x##
##\int 2x ln x \,dx = x^2ln x##-##\int x\,dx##
Good. (Of course there is also a Constant of Integration. But that loses importance for the definite integral.)

A slight tweak to the above method.

By doing the suggested differentiation you have established that ##\displaystyle \int (2x\ln x+x-1)\,dx=x^2\ln x-x ## .

So ##\displaystyle \int 2x\ln x\,dx##

##\quad \quad = \displaystyle \int (2x\ln x+(x-1)-(x-1))\,dx##

##\quad \quad = \displaystyle \int (2x\ln x+x-1)\, dx + \int -(x-1)\,dx##

##\quad \quad = \displaystyle x^2 \ln (x)-x - \frac{x^2}{2} +x + C##

##\quad \quad = \displaystyle x^2 \ln (x) - \frac{x^2}{2} + C##
 
  • Like
Likes   Reactions: chwala
SammyS said:
Good. (Of course there is also a Constant of Integration. But that loses importance for the definite integral.)

A slight tweak to the above method.

By doing the suggested differentiation you have established that ##\displaystyle \int (2x\ln x+x-1)\,dx=x^2\ln x-x ## .

So ##\displaystyle \int 2x\ln x\,dx##

##\quad \quad = \displaystyle \int (2x\ln x+(x-1)-(x-1))\,dx##

##\quad \quad = \displaystyle \int (2x\ln x+x-1)\, dx + \int -(x-1)\,dx##

##\quad \quad = \displaystyle x^2 \ln (x)-x - \frac{x^2}{2} +x + C##

##\quad \quad = \displaystyle x^2 \ln (x) - \frac{x^2}{2} + C##

good one Sammy! Brilliant mate!:cool:
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
8K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 22 ·
Replies
22
Views
3K