Find the distance CD in the given complex variable question

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Complex Variable
chwala
Gold Member
Messages
2,825
Reaction score
413
Homework Statement
See attached
Relevant Equations
complex variables
This is the problem;

1637818462275.png


Note that i am conversant with the above steps shown in the solution, having said that i realized that we could also borrow from the understanding of gradient and straight lines in finding the distance ##CD##... it follows that the equation of ##BA= -1.5x-0.5##, implying that the co ordinates of ##D(x,y) = (2-3, 4-3) = (-1,1)## and using the distance formula, it follows that;
##CD= √[(3)^2 + (1)^2]##= ##√10## as indicated...

any other approach guys...
 
Last edited:
Physics news on Phys.org
\vec{OD}=\frac{1}{2}(\vec{OA}+\vec{OB})=\frac{1}{2}(1-3,-2+4)=(-1,1)
\vec{DC}=(2-(-1),2-1)=(3,1)
 
  • Like
Likes Delta2 and chwala
Keeping in mind that the point of the exercise might be for you to get more comfortable with complex numbers, I hope that you are comfortable with their solution. There are often multiple ways to get the same, true, answer. Some are easier than others. You may soon see examples where the use of complex numbers makes solutions much easier.
 
True, the whole idea is to have an understanding of the argand diagram and also the Complex number, say ##Z = x + iy##, then it follows that the Modulus of
##Z =|x+ iy|= √[(x^2 +y^2)]##, and also a good understanding of vectors is required.



 
Last edited:
...but looking at this problem, we could also just use the relationship of ##AD= \frac {1}{2}AB##.
letting the co ordinates of point ##D## be ##(x,y)##, then ##AB= (-3-1)+i(4+2)##
##AB= -4+6i##, therefore ##AD= -2+3i##, also to find the co ordinate of ##AD= (x-1=-2, y+2=3) ##
giving us the co ordinates, ##(-1,1)##
##CD= (-1-2)+ (1-2)i= -3-i##
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top