Find the distance CD in the given complex variable question

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Complex Variable
Click For Summary
The discussion focuses on finding the distance CD using complex variables and geometric principles. The coordinates of point D are determined to be (-1, 1) based on the equation of line BA and the distance formula yields CD = √10. Participants highlight various methods to arrive at the same solution, emphasizing the importance of understanding complex numbers and vectors. The conversation also touches on the relationship between points A, B, and D, suggesting that multiple approaches can simplify the problem. Overall, the thread illustrates the versatility in solving complex variable problems.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
See attached
Relevant Equations
complex variables
This is the problem;

1637818462275.png


Note that i am conversant with the above steps shown in the solution, having said that i realized that we could also borrow from the understanding of gradient and straight lines in finding the distance ##CD##... it follows that the equation of ##BA= -1.5x-0.5##, implying that the co ordinates of ##D(x,y) = (2-3, 4-3) = (-1,1)## and using the distance formula, it follows that;
##CD= √[(3)^2 + (1)^2]##= ##√10## as indicated...

any other approach guys...
 
Last edited:
Physics news on Phys.org
\vec{OD}=\frac{1}{2}(\vec{OA}+\vec{OB})=\frac{1}{2}(1-3,-2+4)=(-1,1)
\vec{DC}=(2-(-1),2-1)=(3,1)
 
  • Like
Likes Delta2 and chwala
Keeping in mind that the point of the exercise might be for you to get more comfortable with complex numbers, I hope that you are comfortable with their solution. There are often multiple ways to get the same, true, answer. Some are easier than others. You may soon see examples where the use of complex numbers makes solutions much easier.
 
True, the whole idea is to have an understanding of the argand diagram and also the Complex number, say ##Z = x + iy##, then it follows that the Modulus of
##Z =|x+ iy|= √[(x^2 +y^2)]##, and also a good understanding of vectors is required.



 
Last edited:
...but looking at this problem, we could also just use the relationship of ##AD= \frac {1}{2}AB##.
letting the co ordinates of point ##D## be ##(x,y)##, then ##AB= (-3-1)+i(4+2)##
##AB= -4+6i##, therefore ##AD= -2+3i##, also to find the co ordinate of ##AD= (x-1=-2, y+2=3) ##
giving us the co ordinates, ##(-1,1)##
##CD= (-1-2)+ (1-2)i= -3-i##
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
7
Views
2K
Replies
4
Views
2K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
934
Replies
3
Views
2K