Find the distance with the relativity problem

  • Thread starter Thread starter Please Wait
  • Start date Start date
  • Tags Tags
    Relativity
AI Thread Summary
Popeye sails diagonally across a 0.5 km wide channel with a current flowing south at 4 km/h and a wind from the north. His boat's velocity is 12 km/h at a 45° angle east of north, resulting in a northward component of approximately 8.485 km/h. To calculate the time to cross the channel, the eastward component of his velocity must be used, which has already been determined. The discussion emphasizes the need to clarify the eastward distance traveled and the corresponding time to cross the channel. The calculations aim to determine the total distance traveled north along the west bank from start to finish.
Please Wait
Messages
21
Reaction score
0

Homework Statement


Popeye was sailing his boat in a straight channel one half km wide. The steady current flows south at four km/h and a wind blows from the north, parallel to the current. Popeye starts from the west shore. He sets his sail and tiller so that he moves diagonally across and up the channel. The velocity of the boat with respect to the water is twelve km/h in a direction 45° East of North. When he gets very close to the east shore, he stops readjusts the sil and tiller, and establishes an identical upstream tack back toward the west bank (his direction through the water is now 45° West of north). Due to lack of spinach, he was effectively stopped in the water for one whole minute at the turn around. Calculate the distance measured north along the west bank between his start and finish points.

I have created a little description image by myself:
http://s1323.beta.photobucket.com/user/mommadaddy2/media/hhh_zpsa050c917.jpg.html
This image has a error the current is at the same side as wind

The Attempt at a Solution


okay this is how i decided to start this off.
V of current to water = Vcurrent to boat + V boat to water
V = 4 km/h [ S ] + 12 km/h [E 45 N]
V = 4 km/h + 8.485 km/h [ E] + 8.485 km/h [N]
V = 4.485 km/h [ N] + 8.485 km/h [ E]
i do not know what to do next
 
Physics news on Phys.org
Can you use your eastward component of velocity to find the time to cross the channel from the west shore to the east shore?
 
TSny said:
Can you use your eastward component of velocity to find the time to cross the channel from the west shore to the east shore?

alright so the velocity is 12 km/h and the distance is 1.5 km
1.5 km/ 12 km/h = 0.125 h
 
Please Wait said:
alright so the velocity is 12 km/h and the distance is 1.5 km
1.5 km/ 12 km/h = 0.125 h

What distance is 1.5 km? I don't believe this is correct.
---------------------------------------------------------------------
Instead, try to answer the following two questions:

(a) How far east does the boat need to travel to get across the channel? The boat will also travel some in the north direction, but just think about how far the boat needs to move eastward to get across.

(b) What is the rate at which the boat moves eastward? (Hint: this is just another way of asking for the eastward component of velocity.) You've already calculated it in your first post.

Use the answers to (a) and (b) to find the time to cross the channel from the west side to the east side.
 
Last edited:
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top