MHB Find the elementary divisors and invariant factors

fabiancillo
Messages
27
Reaction score
1
Hello I have problems with this exercise

Find the elementary divisors and invariant factors of each of the following groups

a) $G1= Z_6 \times Z_{12} \times Z_{18}$ , b) $G_2= Z_{10} \times Z_{20} \times Z_{30} \times Z_{40}$Thanks
 
Physics news on Phys.org
a) I think that elementary divisors are $\{2,3,2^2,3,2,3^2 \} $ because is the prime decomposition of ${6,12,18}$.

b) elementary divisors are $\{5 ,2 ,2^2, 5, 2, 3, 5, 2^3, 5 \}$
. But I don't use the Chinese remainder theorem to split each factor into cyclic pp-groups, then regroup
 
Last edited:
You are correct so far in parts (a) and (b). You just need to find the invariant factors now.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...

Similar threads

Back
Top