MHB Find the image of a two variable function

Synapse0x
Messages
2
Reaction score
0
So on my first course of Algebra in university I have been asked to find the image of the following function:
f : Z x Z -> Z, f(x, y) = x2 - y2

In high school I worked only with single variable functions and I could have found the image by drawing its graph, using limits or using some specific shortcuts on well known functions (like the quadratic one).
I really have no idea how should I find the image of this one. Actually I don't even know how to plot it, I think its graph is 3D. Can somebody point me in the right direction?
 
Last edited:
Physics news on Phys.org
Synapse0x said:
So on my first course of Algebra in university I have been asked to find the image of the following function:
f : Z x Z -> Z, f(x, y) = x2 - y2

In high school I worked only with single variable functions and I could have found the image by drawing its graph, using limits or using some specific shortcuts on well known functions (like the quadratic one).
I really have no idea how should I find the image of this one. Actually I don't even know how to plot it, I think its graph is 3D. Can somebody point me in the right direction?

You are not required to sketch the graph of the function.

The image of a function is a subset of the target space of the function.

You need to say what is $Z$ exactly?

As of now, my answer would be $\text{Im}(f)=\{x^2-y^2: (x,y)\in Z\times Z\}$.
 
Yes, in other words what is Z exactly.

Your current answer makes sense but how should I state it more accurately. I mean what your wrote is not wrong but it would be the same as saying that the image of g, where g : R -> R, g(x) = x2 - 4x + 1, is {x2 - 4x + 1 : x in R} instead of [-3, +infinity)
 
Synapse0x said:
Yes, in other words what is Z exactly.

Your current answer makes sense but how should I state it more accurately. I mean what your wrote is not wrong but it would be the same as saying that the image of g, where g : R -> R, g(x) = x2 - 4x + 1, is {x2 - 4x + 1 : x in R} instead of [-3, +infinity)

I think by $Z$ you mean the set of all the integers.

In that case, the image of $f$ is $\{n\in\mathbb Z: n \text{ is odd }\}\cup \{n\in \mathbb Z: 4 \text{ divides } n\}$.

To see this, first note that $f(y+1,y)=2y+1$.

Thus all the odd integers are in the image.

Now suppose $f(x,y)$ is even.

Then $2$ divides $(x-y)(x+y)$.

But then $4$ divides $(x-y)(x+y)$ (why?)

So if an even integer is in the image, then it have to be divisible by $4$.

Finally note that $f(y+2,y)=4(y+1)$.

Thus all the integers which are divisible by $4$ are in the image.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 8 ·
Replies
8
Views
1K
Replies
41
Views
2K
Replies
21
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
904
Replies
5
Views
3K
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K