MHB Find the Optimal Starting Time for a Tied Race in Physics Kinematics

  • Thread starter Thread starter leprofece
  • Start date Start date
  • Tags Tags
    Kinematics Physics
Click For Summary
In a physics kinematics problem, John runs at 5 m/s and Joe at 3 m/s over a distance of 300 m, with John starting t seconds after Joe to create a tie. The equations derived show that for the race to end in a tie, t must equal 40 seconds, allowing Joe to cover 120 m before John starts. The calculations confirm that John runs for 60 seconds while Joe runs for 100 seconds, both completing the 300 m distance. The final agreement on the solution validates the approach taken in the discussion. The problem effectively illustrates the relationship between speed, time, and distance in a race scenario.
leprofece
Messages
239
Reaction score
0
John runs at 5 m/s joe runs at 3m/seg the distance to run is 300 m Antony in order to do the race more exciting allows john start t seconds after joe What is the t value so that the race finishes in a tie?? what distance was allowed to joe?? Answer 40 seg and 120 m

I don't know how to denote the time of john
5t = 3 (300-t) ?'
 
Mathematics news on Phys.org
Let's let $T$ represent the time John runs, and so $T+t$ is the time Joe runs. We know the must both run 300 m during their respective times, and so we may write:

$$5T=3(T+t)$$

$$5T=300\implies T=60$$

Can you proceed?
 
sure 5T -3T = t
2 T = t
t = 2 *60 = 120
please I am not Sure cooecte me if I am not correct
and thanks for you reply greetings and regards
 
You should have:

$$5T-3T=3t$$

You didn't distribute the $3$ before...:D
 
2T = 3t

2(60) = 3t
so t = 40 seg

Ok and now: 3 (40) = 120 m

ithink i am ruight now do I?
 
leprofece said:
2T = 3t

2(60) = 3t
so t = 40 seg

Ok and now: 3 (40) = 120 m

ithink i am ruight now do I?

Yes, that's correct! (Sun)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
15K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
11
Views
10K
  • · Replies 1 ·
Replies
1
Views
5K
Replies
11
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
6K
Replies
2
Views
1K