Find the probability all 5 dice rolls are the same

  • Context: MHB 
  • Thread starter Thread starter marcadams267
  • Start date Start date
  • Tags Tags
    Dice Probability
Click For Summary
SUMMARY

The probability calculations for rolling five independent dice yield specific results for various scenarios. The probability that all five dice show the same number is 5/6^5. For four dice showing the same number, the correct probability is 125/6^5, not 150. The probability of rolling a sequence (1-5 or 2-6) is 5/6^5. The probability for two pairs of dice being the same is 1800/6^5, and for one pair with three of a kind, it is 300/6^5. These calculations clarify the correct probabilities for each scenario.

PREREQUISITES
  • Understanding of basic probability theory
  • Familiarity with combinatorial mathematics
  • Knowledge of independent events in probability
  • Ability to calculate factorials and permutations
NEXT STEPS
  • Study combinatorial probability techniques
  • Learn about independent and dependent events in probability
  • Explore advanced probability distributions
  • Practice calculating probabilities with different dice configurations
USEFUL FOR

Mathematicians, statisticians, game designers, and anyone interested in probability theory and combinatorial analysis will benefit from this discussion.

marcadams267
Messages
19
Reaction score
1
Given 5 dice rolls that are independent from each other, what is the probability for the following results? (order of roll does not matter)

1. all 5 dice rolls are the same

2. 4 dice rolls are the same

3. the dice rolls are in sequence (1-5 or 2-6) -order does not matter

4. two pairs of dice are the same (ex: 1 1 4 4 3)

5. the result is one pair and the other three are the same (ex: 1 1 1 6 6)So far, my understanding of the problem has been the ff:
1. 1/6^5
2. 150/6^5
3.(5!+5!)/6^5
4. 1800/6^5
5. 300/6^5

Is this correct?
 
Last edited:
Physics news on Phys.org
marcadams267 said:
Given 5 dice rolls that are independent from each other, what is the probability for the following results? (order of roll does not matter)

1. all 5 dice rolls are the same

2. 4 dice rolls are the same

3. the dice rolls are in sequence (1-5 or 2-6) -order does not matter

4. two pairs of dice are the same (ex: 1 1 4 4 3)

5. the result is one pair and the other three are the same (ex: 1 1 1 6 6)So far, my understanding of the problem has been the ff:
1. 1/6^5
No, this is the probability all 5 are the same specific number. That is, that all 5 are 1 or all 5 are 2, etc. Since there are 6 possible numbers the probability all 5 die are the same number is 5/6^5.

2. 150/6^5[//quote]
The probability the first 4 die are, say, "1" and the other die any other number is (1/6^5)(5/6)= 5/6^5. Since there are 5 "positions" in which the "1" might appear the probability of 4 "1"s and one other number is 25/6^5. But, again, there are 6 number the 4 die might be so the probability of 4 dice being the same number and one die being different is 5(25/6^5)= 125/6^5. How did you get 150?

3.(5!+5!)/6^5
The probability the five die are "1, 2, 3, 4, 5" in that order is 1/6^5. There are 5! different orders so the probability of "1, 2, 3, 4, 5" in any order is 5/6^5. Of course, it is exactly the same for "2, 3, 4, 5. 6" so you are correct.

4. 1800/6^5
The first die could be any thing. The probability that the next die is the same, so that the first two die are the same, is 1/6. The probability the third die is different from the first two is 5/6. The probability the fourth is the same as the third is 1/6. The probability the last is different from either of those is 4/6= 2/3. The probability of "AABBC" is (1/6)(5/6)(1/6)(4/6)= 4/6^4. But there are (2!2!)/5! different orders so this probability is (4(2!2!))/(6^4(5!)). That is 1/(480(6^4)) How did you get 1800?

5. 300/6^5
The first die can be anything. The probability the next two dice are the same is 1/6^2. The probability the fourth die is anything other than that is 5/6. The probability the fifth die is the same as the fourth is 1/6. The probability of "AAABB" is (1/6^2)(5/6)(1/6)= 5/6^4. There are 5!/(3!2!)= 10 ways to order "AAABB" so the probability of three the same and two the same but different from the others is 50/6^4. Since 300/6= 50, that is the same as your answer.
Is this correct?
 
For #2, I got 150 from the ff:

number of choices for the number showing on the dice = 6
number of ways of choosing which 4 dice the four of a kind will appear on = 5C4 = 5!/(1!4!) = 5
number of choices for the last number on the last dice = 6-1 = 5
number of ways to choose the last dice = 1C1 = 1

So the number of correct outcomes is 6*5*5*1 = 150

For #4, I got 1800 from the ff:

Number of choices for the number on first pair = 6
number of ways which two dice have the number =5C2 = 10
number of choices for number on second pair = 5
number of ways which two dice have the number = 3C2 = 3
number of choices for number on last dice = 4
number of ways of choosing last dice = 1C1 = 1
correct outcomes = 6*10*5*3*4*1 = 3600

However, this counts each pair twice (66554 is treated separate than 55664)
so i divide 3600 by 2 = 1800
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
7K