Find the relation between 2 variables

Click For Summary

Homework Help Overview

The discussion revolves around finding the relationship between two variables, specifically \( V_{in} \) and \( V_{out} \), through a set of equations derived from Kirchhoff's Current Law (KCL). The equations involve multiple variables and constants, and participants are attempting to manipulate these equations to eliminate one variable.

Discussion Character

  • Exploratory, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • Participants are discussing the accuracy of the equations presented and seeking clarification on the problem statement. There is an emphasis on ensuring the equations are correctly stated and understood. Some participants suggest using LaTeX for clarity.

Discussion Status

The discussion includes attempts to clarify the equations and their derivations. While some participants express confidence in the equations, others are still seeking confirmation and understanding. A solution has been mentioned by one participant, but the details have not been shared in the thread.

Contextual Notes

There is a request for a complete problem statement, indicating that some information may be missing. The original poster has acknowledged the need for clarity and has provided context regarding the variables involved.

Debdut
Messages
18
Reaction score
2
Homework Statement
Find the relation between Vin and Vout
Relevant Equations
V1 = (-gm1 * Vin + s* C1 * Vout) / (gmc + s * C1)
gmc * V1 + s * C2 * Vout = Vx * (s * rb * C2 + 1) / rb
s * C1 * (V1 - Vout) + s * C2 * (Vx - Vout) = gm2 * Vx + Vout / ro2
Here is the equation I obtain after simplification, I don't know if it is correct:
gmc * V1 + s * C2 * Vout = [{s * (C1 + C2) * ro2 + 1} * Vout - s * C1 * ro2 * V1] * (s * rb * C2 + 1) / {ro2 * rb * (s * C2 - gm2)}

I need to eliminate V1 to find the relation between Vin and Vout.
 
Physics news on Phys.org
Can you post the complete problem statement ?
And please understand that telepathy isn't everyone's forte, so tell us what this is about.

##\ ##
 
  • Like
Likes   Reactions: e_jane
BvU said:
Can you post the complete problem statement ?
And please understand that telepathy isn't everyone's forte, so tell us what this is about.

##\ ##
I don't know if they rewrote, but he explained in the line at the bottom. Though , OP , please use Latex to write your question.
 
Debdut said:
V1 = (-gm1 * Vin + s* C1 * Vout) / (gmc + s * C1)
gmc * V1 + s * C2 * Vout = Vx * (s * rb * C2 + 1) / rb
s * C1 * (V1 - Vout) + s * C2 * (Vx - Vout) = gm2 * Vx + Vout / ro2
For clarity's sake, is the following an accurate statement of the three equations?

##\qquad \textrm{Eqn 1: } V_1 = \dfrac{-g_{m_1} V_{in} + sC_1V_{out}}{g_{m_c} + sC_1}##

##\qquad \textrm{Eqn 2: } g_{m_c} V_1 + s C_2 V_{out} = V_x \dfrac{s r_b C_2 + 1}{r_b}##

##\qquad \textrm{Eqn 3: } s C_1 \left(V_1 - V_{out}\right) + s C_2 \left(V_x - V_{out}\right) = g_{m_2} V_x + \dfrac{V_{out}}{r_{o_2}}##

Thank you!
 
  • Like
Likes   Reactions: Debdut, WWGD and berkeman
e_jane said:
For clarity's sake, is the following an accurate statement of the three equations?

##\qquad \textrm{Eqn 1: } V_1 = \dfrac{-g_{m_1} V_{in} + sC_1V_{out}}{g_{m_c} + sC_1}##

##\qquad \textrm{Eqn 2: } g_{m_c} V_1 + s C_2 V_{out} = V_x \dfrac{s r_b C_2 + 1}{r_b}##

##\qquad \textrm{Eqn 3: } s C_1 \left(V_1 - V_{out}\right) + s C_2 \left(V_x - V_{out}\right) = g_{m_2} V_x + \dfrac{V_{out}}{r_{o_2}}##

Thank you!
Yes, these are the equations. Thank you very much.
 
ckt.png


I am sorry for not elaborating. The equations are obtained by KCL of the above image.
Here ##V_1##, ##V_x##, ##V_{in}## and ##V_{out}## are variables and all else are constants. I need to find the relation between ##V_{in}## and ##V_{out}##.
 
  • Like
Likes   Reactions: BvU
Hi, I found the solution using the method of determinants. It was not difficult. Thanks.
 
  • Like
Likes   Reactions: WWGD
Debdut said:
Hi, I found the solution using the method of determinants. It was not difficult. Thanks.
If not overly long, why not write it here so others can benefit from it?
 
  • Like
Likes   Reactions: SammyS

Similar threads

  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
919
  • · Replies 6 ·
Replies
6
Views
4K
Replies
39
Views
6K
  • · Replies 75 ·
3
Replies
75
Views
7K
  • · Replies 56 ·
2
Replies
56
Views
6K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
1
Views
2K