songoku
- 2,467
- 382
- Homework Statement
- Find ##\frac{2}{L} \int_{0}^{L} \sin\left(\frac{5x}{L}\right) \sin \left(\frac{n\pi x}{L} \right) dx##
- Relevant Equations
- Trigonometry Identity
Integration
$$\frac{2}{L} \int_{0}^{L} \sin\left(\frac{5x}{L}\right) \sin \left(\frac{n\pi x}{L} \right)dx$$
$$=\frac{2}{L} \int_{0}^{L} \left(\frac{1}{2} \cos\left[\left(\frac{5-n\pi}{L}\right)x\right] -\frac{1}{2}\cos \left[\left(\frac{5 + n\pi}{L} \right)x\right]\right)dx$$
$$=\frac{1}{5-n\pi} \sin (5-n\pi)-\frac{1}{5+n\pi}\sin(5+n\pi)$$
This is as far as I can get but the answer key is if ##n=5## then the result of integration is 1 and will be zero for other values of ##n##.
How to proceed to get the answer? Thanks
$$=\frac{2}{L} \int_{0}^{L} \left(\frac{1}{2} \cos\left[\left(\frac{5-n\pi}{L}\right)x\right] -\frac{1}{2}\cos \left[\left(\frac{5 + n\pi}{L} \right)x\right]\right)dx$$
$$=\frac{1}{5-n\pi} \sin (5-n\pi)-\frac{1}{5+n\pi}\sin(5+n\pi)$$
This is as far as I can get but the answer key is if ##n=5## then the result of integration is 1 and will be zero for other values of ##n##.
How to proceed to get the answer? Thanks