MHB Find the total numbers to make A=21

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Numbers
Click For Summary
To achieve a total of A=21 using the numbers 1 through 9 with "+" and "-" operations, participants discuss various combinations and calculations. The consensus is that certain combinations can yield the desired total, while others are ruled out. Specifically, it is demonstrated that achieving A=12 is impossible due to the limitations of the number range and operations. The thread emphasizes the importance of strategic placement of "+" and "-" to reach the target. Ultimately, the challenge illustrates the mathematical exploration of combinations to achieve specific sums.
Albert1
Messages
1,221
Reaction score
0
$A=$$\square$1 $\square$2 $\square$3$\square$4 $\square$5$\square$6 $\square$7 $\square$8 $\square$9
randomly fill in each blank with eather $"+"$ or $"-"$ ,
(1) prove $A$ can not be $12$
(2) find the total numbers to make $A=21$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$A=$$\square$1 $\square$2 $\square$3$\square$4 $\square$5$\square$6 $\square$7 $\square$8 $\square$9
randomly fill in each blank with eather $"+"$ or $"-"$ ,
(1) prove $A$ can not be $12$
(2) find the total numbers to make $A=21$

If there is + before each number we have sum of numbers = 45
when we convert a + to a - say before n we subtract the value by 2n, hence the number shall remain odd
so $A$ cannot be 12.
we need to make the result 21 so subtract 24 so we need to choose numbers whose sum is 12 and change plus to -
the numbers are (9,3), (9,2,1), (8,4), (8,3,1), (7,5) , (7,4,1), (7,3,2), (6,5,1), (6,4,2),(6,3,2,1), (5,4,3) (5,4,2,1) that is 12 combinations.
 

Similar threads

Replies
3
Views
1K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
17K
Replies
1
Views
3K