MHB Find the total numbers to make A=21

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Numbers
Albert1
Messages
1,221
Reaction score
0
$A=$$\square$1 $\square$2 $\square$3$\square$4 $\square$5$\square$6 $\square$7 $\square$8 $\square$9
randomly fill in each blank with eather $"+"$ or $"-"$ ,
(1) prove $A$ can not be $12$
(2) find the total numbers to make $A=21$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$A=$$\square$1 $\square$2 $\square$3$\square$4 $\square$5$\square$6 $\square$7 $\square$8 $\square$9
randomly fill in each blank with eather $"+"$ or $"-"$ ,
(1) prove $A$ can not be $12$
(2) find the total numbers to make $A=21$

If there is + before each number we have sum of numbers = 45
when we convert a + to a - say before n we subtract the value by 2n, hence the number shall remain odd
so $A$ cannot be 12.
we need to make the result 21 so subtract 24 so we need to choose numbers whose sum is 12 and change plus to -
the numbers are (9,3), (9,2,1), (8,4), (8,3,1), (7,5) , (7,4,1), (7,3,2), (6,5,1), (6,4,2),(6,3,2,1), (5,4,3) (5,4,2,1) that is 12 combinations.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top