Find the value of ##k^2## in the problem involving trigonometry

Click For Summary

Homework Help Overview

The discussion revolves around a trigonometric problem involving the calculation of \(k^2\) based on a relationship derived from the cosine rule. Participants are examining the expressions related to the sides of a triangle and their relationship to angles.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants are exploring different forms of the equation \(c^2 = a^2 + b^2 + 2ab(1 - 2\cos^2 \frac{1}{2} C)\) and its implications for \(k^2\). There are attempts to reconcile differing results from the original poster and the textbook solution. Some participants are questioning the factorization steps and the assumptions made in deriving \(k^2\).

Discussion Status

There is an ongoing exploration of the relationships between the derived expressions and the textbook solution. Some participants have provided insights into the factorization process and have pointed out potential oversights in the original calculations. The discussion remains open with various interpretations being considered.

Contextual Notes

Participants are working under the constraints of a homework assignment, which may limit the information available and the methods they can use. There is also a mention of needing to verify textbook solutions, indicating possible discrepancies in understanding or calculation.

chwala
Gold Member
Messages
2,828
Reaction score
425
Homework Statement
See attached.
Relevant Equations
Trigonometry
1697019239760.png


In my working i have,

...

##\cos C = 2\cos^2 \dfrac{1}{2} C -1##

##c^2= a^2+b^2-2ab(2\cos^2 \dfrac{1}{2} C-1)##

##c^2= a^2+b^2+2ab(1-2\cos^2 \dfrac{1}{2} C)##

##c^2= (a+b)^2 (1-2\cos^2 \dfrac{1}{2} C)##
Now from here, ##k^2 =2## but text gives different solution. I am still checking this...am i missing something guys?
 
Physics news on Phys.org
From the third line
c^2=(a+b)^2 (1 - 4\frac{ab}{(a+b)^2}\cos^2 \frac{C}{2})
So
k=\frac{\sqrt{ab}}{\frac{a+b}{2}} \leq 1
 
  • Informative
Likes   Reactions: chwala
anuttarasammyak said:
From the third line
c^2=(a+b)^2 (1 - 4\frac{ab}{(a+b)^2}\cos^2 \frac{C}{2})
So
k=\frac{\sqrt{ab}}{\frac{a+b}{2}} \leq 1
Ok nice one, i can see that

##(a+b)^2\left[\dfrac{(a+b)^2-4ab}{(a+b)^2}\right]≡a^2+b^2+2ab(1-2\cos^2 \dfrac{1}{2} C)##

but the text solution is ##k^2= \dfrac{4ab}{a^2+b^2}## and not ##k^2= \dfrac{4ab}{(a+b)^2}## as you've shown.

I hope i checked my textbook correctly...will have access to it later.
 
Last edited:
chwala said:
Ok nice one, i can see that

##(a+b)^2\left[\dfrac{(a+b)^2-4ab}{(a+b)^2}\right]≡a^2+b^2+2ab(1-2\cos^2 \dfrac{1}{2} C)##

but the text solution is ##k^2= \dfrac{4ab}{a^2+b^2}## and not ##k^2= \dfrac{4ab}{(a+b)^2}## as you've shown.

I hope i checked my textbook correctly...will have access to it later.
You have left out the cos2 on the left hand side of that first equation. It should read:

##\displaystyle \quad\quad (a+b)^2\left[\dfrac{(a+b)^2-4ab\,\cos^2(C/2)}{(a+b)^2}\right] = \dots ##

This is consistent with @anuttarasammyak's result and simplifies to:

##\displaystyle \quad\quad (a+b)^2\left[1-\dfrac{(2ab)\,2\cos^2(C/2)}{(a+b)^2}\right] ## ,

which can easily be compared to the 2nd or 3rd line of your OP.
 
  • Like
Likes   Reactions: chwala
chwala said:
Ok nice one, i can see that

##(a+b)^2\left[\dfrac{(a+b)^2-4ab}{(a+b)^2}\right]≡a^2+b^2+2ab(1-2\cos^2 \dfrac{1}{2} C)##

but the text solution is ##k^2= \dfrac{4ab}{a^2+b^2}## and not ##k^2= \dfrac{4ab}{(a+b)^2}## as you've shown.

I hope i checked my textbook correctly...will have access to it later.
@anuttarasammyak you're 💯 correct. Cheers!
 
Was good question 🤣🤣🤣 mixed me up a bit. Wah! Expand with ##2ab## first, then factorize to have ##(a+b)^2## then divide each term by ##(a+b)^2## and multiply whole by ##(a+b)^2##.
Will post later once I get hold of laptop.

What i was missing was:
...

##a^2+b^2+2ab(1-2)##

on expanding we get;

## a^2+b^2+2ab-4ab=((a+b)^2 -4ab)##

then divide each term by ##(a+b)^2## and multiplying by ##(a+b)^2## realizes,

##= \left(1-\dfrac{4ab}{(a+b)^2}\right)×(a+b)^2=(a+b)^2\left(1-\dfrac{4ab}{(a+b)^2}\right)##
 
Last edited:
SammyS said:
You have left out the cos2 on the left hand side of that first equation. It should read:

##\displaystyle \quad\quad (a+b)^2\left[\dfrac{(a+b)^2-4ab\,\cos^2(C/2)}{(a+b)^2}\right] = \dots ##

This is consistent with @anuttarasammyak's result and simplifies to:

##\displaystyle \quad\quad (a+b)^2\left[1-\dfrac{(2ab)\,2\cos^2(C/2)}{(a+b)^2}\right] ## ,

which can easily be compared to the 2nd or 3rd line of your OP.
good but that is not really where my problem is though ...my problem is on the factorisation bit...
 
chwala said:
good but that is not really where my problem is though ...my problem is on the factorisation bit...
Maybe that was your problem, but in the threads you post, it's often difficult to tell where you're having difficulty, because all too often you skip steps and/or do not explain what you're doing.

For instance, in the OP of this thread you have:

chwala said:
##c^2= a^2+b^2+2ab(1-2\cos^2 \dfrac{1}{2} C)##

##c^2= (a+b)^2 (1-2\cos^2 \dfrac{1}{2} C)##
Smaller steps give:

##\displaystyle \quad\quad c^2= a^2+b^2+2ab(1-2\cos^2 (C/2)\, )##

##\displaystyle \quad\quad c^2= a^2+b^2+2ab-4ab\cos^2 (C/2)##

##\displaystyle \quad\quad c^2= (a+b)^2-4ab\cos^2 (C/2)##

##\displaystyle \quad\quad c^2= (a+b)^2\left(1-\dfrac{4ab\cos^2 (C/2)}{(a+b)^2}\right)##
 
  • Like
Likes   Reactions: Mark44

Similar threads

Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
1
Views
2K
Replies
3
Views
3K