Find the value of the definite integral

Click For Summary

Homework Help Overview

The discussion revolves around evaluating a definite integral involving trigonometric functions, specifically using cosine and sine identities. The original poster presents an approach utilizing the cosine sum and product concepts, along with integration techniques.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants explore various methods for evaluating the integral, including substitutions and trigonometric identities. Some question the appropriateness of providing approximate values versus exact values, while others suggest alternative substitutions for simplification.

Discussion Status

The discussion is ongoing, with participants offering different perspectives on how to approach the problem. Some have pointed out the need for exact values rather than approximations, while others are considering further substitutions to facilitate the integration process.

Contextual Notes

There is a mention of homework constraints regarding the presentation of answers, specifically the requirement to provide exact values. This has led to discussions about the implications of rounding and the use of π in the final answer.

chwala
Gold Member
Messages
2,828
Reaction score
425
Homework Statement
see attached
Relevant Equations
integration
Find question here,
1653570958692.png


My approach, using cosine sum and product concept, we shall have;

##\cos (A+B)-\cos (A-B)=-2\sin A\sin B##

##⇒\cos D-\cos C=-2\sin\dfrac{C+D}{2} \sin\dfrac {C-D}{-2}##

##⇒-3[\cos(A+B)-\cos(A-B)]=6\sin A sinB##

We are given ##A=4θ## and ##B=2θ##, therefore,

##⇒-3[\cos 6θ-\cos 2θ]=6\sin 4θ\sin2θ##

##⇒3\cos 2θ-3\cos 6θ=6\sin 4θ\sin2θ##

I made use of chain rule in my working... i.e letting ##u=2θ## and ##u=6θ## ...

##\int_0^\frac{π}{3} [3\cos 2θ-3\cos 6θ+2] dθ=\dfrac{3}{2} \sin 2θ-\dfrac{1}{2} \sin 6θ +2θ## from ##[θ=0]## to ##[θ=\frac{π}{3}]##

On substituting the given limits, we end up with,

##[1.2990-0+2.094395]-[0]=3.393## to 3 decimal places...

Any other approach is welcome...cheers
 
Last edited:
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
Giving something to three decimal places is not giving the exact value. (Unless the decimal expansion terminates there - which it doesn’t in this case)
 
  • Like
Likes   Reactions: chwala and Mark44
chwala said:
On substituting the given limits, we end up with,

[1.2990−0+2.094395]−[0]=3.393 to 3 decimal places...
As @Orodruin pointed out, your answer doesn't comply with the problem's request to "find the exact value".

For example, if ##\theta = \frac \pi 3##, then the value of ##\sin(2\theta)## is ##\sin(\frac{2\pi}3)##. As an exact value, this is ##\frac{\sqrt 3}2##; as an approximate value this is ##\approx 0.866##.
 
  • Like
Likes   Reactions: chwala
Another approach would be make the substitution ##u=2\theta## and observe,
$$
sin(2u)sin(u)=2\cos(u)\sin^2(u)
$$
A further substitution should immediately come to mind.
 
  • Like
Likes   Reactions: Delta2 and SammyS
Thanks...in that case i will need to leave the final answer in terms of ##π## i will look at that...
 
Aaaaargh this was easy...I will post the exact solution later in the day...when I get hold of my laptop...
 
chwala said:
Homework Statement:: see attached
Relevant Equations:: integration

Find question here,
View attachment 301958

My approach, using cosine sum and product concept, we shall have;

##\cos (A+B)-\cos (A-B)=-2\sin A\sin B##

##⇒\cos D-\cos C=-2\sin\dfrac{C+D}{2} \sin\dfrac {C-D}{-2}##

##⇒-3[\cos(A+B)-\cos(A-B)]=6\sin A sinB##

We are given ##A=4θ## and ##B=2θ##, therefore,

##⇒-3[\cos 6θ-\cos 2θ]=6\sin 4θ\sin2θ##

##⇒3\cos 2θ-3\cos 6θ=6\sin 4θ\sin2θ##

I made use of chain rule in my working... i.e letting ##u=2θ## and ##u=6θ## ...

##\int_0^\frac{π}{3} [3\cos 2θ-3\cos 6θ+2] dθ=\dfrac{3}{2} \sin 2θ-\dfrac{1}{2} \sin 6θ +2θ## from ##[θ=0]## to ##[θ=\frac{π}{3}]##

On substituting the given limits, we end up with,

##[1.2990-0+2.094395]-[0]=3.393## to 3 decimal places...

Any other approach is welcome...cheers
We shall have;

##...\dfrac{3}{2} \sin \dfrac{2π}{3}-\dfrac{1}{2} \sin 2π+\dfrac{2π}{3}##
##=\dfrac{3}{2}⋅\dfrac{\sqrt 3}{2}+\dfrac{2π}{3}##
##=\dfrac{3\sqrt 3}{4}+\dfrac{2π}{3}##
 
  • Like
Likes   Reactions: Delta2

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
1K