Re: Find the value of x^5+y^5+z^5.
Opalg said:
I used
Newton's identities to solve this problem. Let $\lambda^3 -a\lambda^2+b\lambda-c=0$ be the equation whose solutions are $x,\ y$ and $z$, and let $p_k = x^k+y^k+z^k$, for $k=1,2,3,\ldots$. Newton's identities say that $$\begin{aligned}a &= p_1 \\ 2b &= ap_1-p_2 \\ 3c &= bp_1-ap_2 + p_3 \\ 0 &= cp_1-bp_2+ap_3 - p_4 \\ 0 &= 0p_1 - cp_2 + bp_3-ap_4 + p_5 .\end{aligned}$$ Inserting the values that we are given, the first four identities become $$\begin{aligned}a &= 3 \\ 2b &= 9-p_2 \\ 3c &= 3b-3p_2 + 15 \\ 0 &= 3c-bp_2+45 - 35 .\end{aligned}$$ Substitute the values for $b$ and $c$ from the second and third of these equations into the final one, we get $$0 = \tfrac32(9-p_2) - 3p_2 + 15 - \tfrac12(9-p_2)p_2 + 10 = \tfrac12(p_2^2 - 18p_2 + 77) = \tfrac12(p_2-7)(p_2-11).$$ That gives possible values of $7$ or $11$ for $p_2$. But we are told that $p_2<10$, so we must have $p_2=7.$
Substituting that value for $p_2$ it is easy to check that $b=1$, $c=-1$, and then the last of the Newton identities above gives $\boxed{p_5 = 83}.$
[The cubic equation in $\lambda$ then becomes $\lambda^3 -3\lambda^2+\lambda+1=0$, which has solutions $\lambda = 1$ and $\lambda = 1\pm\sqrt2.$ So those are the values of $x$, $y$ and $z$.]
Awesome!
I used an elementary method to solve it because I don't know anything about the Newton Identities, and you can expect my solution to be lengthy and tedious. But, my answer is different from yours and I am certain that it must be my answer that is wrong.
Could you please tell me where did I do wrong?
Here is my solution:
We're told that
$x+y+z=3$
$\therefore (x+y+z)^2=3^2=(x+y+z)(x+y+z)=x^2+y^2+z^2+2(xy+yz+xz)$
We get
$9=x^2+y^2+z^2+2(xy+yz+xz)$---(1)
Now, we cube the expression $x+y+z$, we get:
$(x+y+z)^3=3^3=x^3+y^3+z^3+3x^2y+3x^2z+3xy^2+3xz^2+3y^2z+3yz^2+6xyz$
$12=3y(x^2+z^2)+3z(x^2+y^2)+3x(y^2+z^2)+6xyz$
Rearrange it and do some algebraic trick, the equation above becomes:
$12=3y(x^2+z^2+y^2-y^2)+3z(x^2+y^2+z^2-z^2)+3x(y^2+z^2+x^2-x^2)+6xyz$
$12=3y(x^2+z^2+y^2-y^2)+3z(x^2+y^2+z^2-z^2)+3x(y^2+z^2+x^2-x^2)+6xyz$
$12=3y(x^2+z^2+y^2)-3y^3+3z(x^2+y^2+z^2)-3z^3+3x(y^2+z^2+x^2)-3x^2+6xyz$
$12=3(x^2+y^2+z^2)(x+y+z)-3(x^3+y^3+z^3)+6xyz$
$12=3(x^2+y^2+z^2)(3)-3(15)+6xyz$
$57=9(x^2+y^2+z^2)+6xyz$
$19=3(x^2+y^2+z^2)+2xyz$---(2)
Similarly, we raise the equation $x+y+z$ to the fourth power yields
$(x+y+z)^4=3^4=x^4+y^4+z^4+4x^3y+4xy^3+4xy^3+4xz^3+4yz^3+6x^2y^2+6x^2z^2+6y^2x^2$
$81=35+4x^3y+4xy^3+4xy^3+4xz^3+4yz^3+6x^2y^2+6x^2z^2+6y^2x^2$
$46=4y(x^3+z^3)+4z(x^3+y^3)+4x(y^3+z^3)+6(x^2y^2+x^2z^2+y^2z^2)$
$46=4y(x^3+z^3+y^3-y^3)+4z(x^3+y^3+z^3-z^3)+4x(y^3+z^3+x^3-x^3)+6(x^2y^2+x^2z^2+y^2z^2)$
$46=4(x^3+z^3+y^3)(x+y+z)-4(x^4+y^4+z^4)+6(x^2y^2+x^2z^2+y^2z^2)$
$46=4(15)(3)-4(35)+6(x^2y^2+x^2z^2+y^2z^2)$
$6=6(x^2y^2+x^2z^2+y^2z^2)$
$1=x^2y^2+x^2z^2+y^2z^2$---(3)
From (1) and (2), we get:
$19=3(9-2(xy+yz+xz))+2xyz$
$19=27-6(xy+yz+xz)+2xyz$
$6(xy+yz+xz)=8+2xyz$
$3(xy+yz+xz)=4+xyz$---(4)
Next, we square the expression $xy+yz+xz$ and obtain:
$(xy+yz+xz)^2=x^2y^2+y^2z^2+x^2z^2+xy^2z+x^2yz+xy^2z+xyz^2+x^2yz+xyz^2$
$(xy+yz+xz)^2=(x^2y^2+y^2z^2+x^2z^2)+2xy^2z+2x^2yz+2xyz^2$
$(xy+yz+xz)^2=(x^2y^2+y^2z^2+x^2z^2)+2xyz(x+y+z)$
$\therefore (xy+yz+xz)^2=1+6xyz$ since $x^2y^2+x^2z^2+y^2z^2=1$
From (4) and the equation above, we could further simplify them to get
$9(xy+yz+xz)^2=(4+xyz)^2$
$9(1+6xyz)=16+8xyz+(xyz)^2$
$9+54xyz=16+8xyz+(xyz)^2$
$(xyz)^2-46xyz+7=0$
$\displaystyle xyz=23 \pm 3\sqrt{58}$ (This doesn't seem right...)
Since $x^2+y^2+z^2<10$, $\displaystyle xyz=23 - 3\sqrt{58}$.
Finally, we raise the equation $x+y+z$ to the fifth power, this gives
$(x+y+z)^5=3^5=x^5+y^5+z^5+5x^4y+5x^4z+5xy^4+5xz^4+5y^4z+5yz^4$
$+10x^3y^2+10x^3z^2+10x^2y^3+10x^2z^3+10y^3z^2+10y^2z^3+20xyz(x^2+y^2+z^2)+30xyz(xy+yz+zx)$
$3^5=-14(x^5+y^5+z^5)+5(x^4+y^4+z^4)(x+y+z)+10(x^3+y^3+z^3)(x^2+y^2+z^2)$
$+20xyz(x^2+y^2+z^2)+30xyz(xy+xz+yz)$
$3^5=-14(x^5+y^5+z^5)+5(35)(3)+10(15)(x^2+y^2+z^2)+20xyz(x^2+y^2+z^2)+30xyz(xy+xz+yz)$
$3^5=-14(x^5+y^5+z^5)+5(35)(3)+150(x^2+y^2+z^2)+20xyz(x^2+y^2+z^2)+30xyz(xy+xz+yz)$
$3^5=-14(x^5+y^5+z^5)+5(35)(3)+(x^2+y^2+z^2)(150+20xyz)+30xyz(xy+xz+yz)$
$3^5=-14(x^5+y^5+z^5)+5(35)(3)+\left(\frac{19-2xyz}{3}\right)(150+20xyz)+30xyz\left(\frac{4xyz}{3}\right)$
By substituting the value of $\displaystyle xyz=23 - 3\sqrt{58}$ into the equation above, we get
$x^5+y^5+z^5=\frac{-2214+780\sqrt{58}}{42}$
I am aware that this is just way too tiring to even look at,(Tmi) never mind, Opalg, I will use the Newton Identities instead, thanks for participating in this particular problem.:)
Thanks.