MHB Find the value of (x+y+z)/(l+m+k)

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Value
AI Thread Summary
The problem involves evaluating the expression (x+y+z)/(l+m+k) given the equations x²+y²+z²=25, l²+m²+k²=36, and xl+ym+zk=30. The correct solution yields a result of 5/6. Participants discussed the nature of the variables, clarifying that they are not restricted to integers. The conversation included encouragement for further engagement in solving similar challenges. The final answer is confirmed as 5/6.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
$x,\,y,\,z,\,l,\,m,\,k$ are real numbers such that

$x^2+y^2+z^2=25$,

$l^2+m^2+k^2=36$, and

$xl+ym+zk=30$.

Evaluate $\dfrac{x+y+z}{l+m+k}$.
 
Mathematics news on Phys.org
ineedhelpnow said:
Take the square root of each equation.

X+Y+Z=5

L+M+K=6

$\frac{X+Y+Z}{L+M+K}= 5/6$

$(x+y+z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$ and not $x^2+y^2+z^2$
 
I made an oopsie. Thanks for pointing it out :)

Add the two equations together first.

$x^2 + l^2 + y^2 + m^2 + z^2 + k^2 = 25 + 36$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 2(xl + ym + zk) = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 2(30) = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 60 = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 = 121$

1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81 , 100
4 + 36 + 81 = 121

So, x+l, y+m, and z+k are 2,6,9 in any order

From $x^2 + y^2 + z^2 = 25$
3 solution sets:
5,0,0
0,5,0
0,0,5

From $l^2 + m^2 + k^2 = 36$
3 solution sets:
6,0,0
0,6,0
0,0,6

It can only be :

x=5,y=0,z=0,l=6,m=0,n=0 or
x=0,y=5,z=0,l=0,m=6,n=0 or
x=0,y=0,z=5,l=0,m=0,k=6

In any of those cases, (x+y+z)/(l+m+k) would be :

(5+0+0)/(6+0+0) or (0+5+0)/(0+6+0) or (0+0+5)/(0+0+6)

sooooooooooo 5/6 :p
 
ineedhelpnow said:
I made an oopsie. Thanks for pointing it out :)

Add the two equations together first.

$x^2 + l^2 + y^2 + m^2 + z^2 + k^2 = 25 + 36$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 2(xl + ym + zk) = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 2(30) = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 60 = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 = 121$

1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81 , 100
4 + 36 + 81 = 121

So, x+l, y+m, and z+k are 2,6,9 in any order

From $x^2 + y^2 + z^2 = 25$
3 solution sets:
5,0,0
0,5,0
0,0,5

From $l^2 + m^2 + k^2 = 36$
3 solution sets:
6,0,0
0,6,0
0,0,6

It can only be :

x=5,y=0,z=0,l=6,m=0,n=0 or
x=0,y=5,z=0,l=0,m=6,n=0 or
x=0,y=0,z=5,l=0,m=0,k=6

In any of those cases, (x+y+z)/(l+m+k) would be :

(5+0+0)/(6+0+0) or (0+5+0)/(0+6+0) or (0+0+5)/(0+0+6)

sooooooooooo 5/6 :p

No one told you that they are integers
 
kaliprasad said:
No one told you that they are integers

I don't know what else to try. Someone else can have a go at it :o
 
ineedhelpnow said:
I made an oopsie. Thanks for pointing it out :)

Add the two equations together first.

$x^2 + l^2 + y^2 + m^2 + z^2 + k^2 = 25 + 36$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 2(xl + ym + zk) = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 2(30) = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 60 = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 = 121$

1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81 , 100
4 + 36 + 81 = 121

So, x+l, y+m, and z+k are 2,6,9 in any order

From $x^2 + y^2 + z^2 = 25$
3 solution sets:
5,0,0
0,5,0
0,0,5

From $l^2 + m^2 + k^2 = 36$
3 solution sets:
6,0,0
0,6,0
0,0,6

It can only be :

x=5,y=0,z=0,l=6,m=0,n=0 or
x=0,y=5,z=0,l=0,m=6,n=0 or
x=0,y=0,z=5,l=0,m=0,k=6

In any of those cases, (x+y+z)/(l+m+k) would be :

(5+0+0)/(6+0+0) or (0+5+0)/(0+6+0) or (0+0+5)/(0+0+6)

sooooooooooo 5/6 :p

Hi ineedhelpnow!

I applaud you for taking a stab at this challenge, but kaliprasad is right; we are not told that the 6 variables are integers. The good news is, your end result $\dfrac{5}{6}$ is correct, so, in an effort to encourage more members to participate in my challenges, I will give you 50% for the correct answer, hehehe...:P
 
We have two spheres centered at the origin. If $$x,y,z$$ and $$l,m,k$$ are treated as the components of
two collinear vectors the equation $$xl+ym+zk=30$$ always holds:

$$<x,y,z>\cdot<l,m,k>\,=5\cdot6\cos(0)=30$$

and so

$$\frac{x+y+z}{l+m+k}=\frac{|<x,y,z>|}{|<l,m,k>|}=\frac56$$

as required.
 
Last edited:
greg1313 said:
We have two spheres centered at the origin. If $$x,y,z$$ and $$l,k,m$$ are treated as the components of
two collinear vectors the equation $$xl+ym+zk=30$$ always holds:

$$<x,y,z>\cdot<l,m,k>\,=5\cdot6\cos(0)=30$$

and so

$$\frac{x+y+z}{l+m+k}=\frac{|<x,y,z>|}{|<l,m,k>|}=\frac56$$

as required.

Bravo, greg1313! Thanks for participating! :cool:
 
Another method of other to solve for this challenge:

$x^2+y^2+z^2=25$ gives us $\left(\dfrac{x}{5}\right)^2+\left(\dfrac{y}{5}\right)^2+\left(\dfrac{z}{5}\right)^2=1$,

$l^2+m^2+k^2=36$ gives us $\left(\dfrac{l}{6}\right)^2+\left(\dfrac{m}{6}\right)^2+\left(\dfrac{k}{6}\right)^2=1$ and

$\dfrac{xl}{30}+\dfrac{ym}{30}+\dfrac{zk}{30}=1$

So $\left(\dfrac{x}{5}\right)^2+\left(\dfrac{y}{5}\right)^2+\left(\dfrac{z}{5}\right)^2-2\left(\dfrac{xl}{30}+\dfrac{ym}{30}+\dfrac{zk}{30}\right)+\left(\dfrac{l}{6}\right)^2+\left(\dfrac{m}{6}\right)^2+\left(\dfrac{k}{6}\right)^2=1-2+1=0$

This implies $\left(\dfrac{x}{5}-\dfrac{l}{6}\right)^2+\left(\dfrac{y}{5}-\dfrac{m}{6}\right)^2+\left(\dfrac{z}{5}-\dfrac{k}{6}\right)^2=0$

$\therefore \dfrac{x}{5}-\dfrac{l}{6}=0,\,\,\dfrac{y}{5}-\dfrac{m}{6}=0,\,\,\dfrac{z}{5}-\dfrac{k}{6}=0$

thus we have $x=\dfrac{5l}{6}$, $y=\dfrac{5m}{6}$ and $z=\dfrac{5k}{6}$

Hence,

$\dfrac{x+y+z}{l+m+k}=\dfrac{\dfrac{5l}{6}+\dfrac{5m}{6}+\dfrac{5k}{6}}{l+m+k}=\dfrac{5}{6}$
 
Last edited:
Back
Top