Find the Volume of Mt. Vesuvius After 79AD in Terms of pi

  • Context: MHB 
  • Thread starter Thread starter ruu
  • Start date Start date
  • Tags Tags
    Pi Terms Volume
Click For Summary

Discussion Overview

The discussion revolves around calculating the volume of Mt. Vesuvius after the eruption in 79 AD, focusing on the mathematical modeling of the volcano's shape and volume. Participants explore different approaches to derive the volume, including the use of conical and frustum volume formulas.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a calculation for the volume of Mt. Vesuvius before and after the eruption, using a conical volume formula and expressing uncertainty about the correctness of their work.
  • Another participant introduces a linear relationship for the radius of the cone as a function of height, leading to a different method for calculating the volume of the frustum formed after the eruption.
  • This second participant provides a detailed calculation for the volume of the frustum, arriving at a significantly different numerical result than the first participant.
  • Some participants discuss the method of subtracting the volume of the erupted part from the total volume before the eruption, questioning the correctness of the initial height used in the calculations.
  • There is a suggestion to check the calculations for errors, particularly regarding the height used to determine the volume of the part blown off.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the correct volume calculation, as there are multiple competing approaches and results presented. Disagreements exist regarding the method and assumptions used in the calculations.

Contextual Notes

Participants express uncertainty about specific mathematical steps and the assumptions underlying their calculations, particularly concerning the height and radius relationships in the context of the volcano's geometry.

ruu
Messages
2
Reaction score
0
Mt. Vesuvius in Pompeii was a conic volcano with a height from its base 7950 feet and a base radius of 2300 feet. In 79 AD, the volcano erupted, reducing its height to 4200 feet . Find the volume of the volcano after 79 AD in terms of pi.


WORK:
Volume of Volcano(Before 79AD)= \pi *r^2*h/3
=\pi *(2300)^2 * 7950/3
=5290000\pi * 2650
= 1.4019 * 10^10 * \pi

Volume of Volcano part erupted off:
Height: 7950 ft - 2300 ft = 5650 ft
Radius= 5650 * (2300/7950) = 1634.5912 ft
Volume= \pi *r^2*h/3
= \pi *(1634.5912)^2*5650/3
=2671888.375 \pi * 1896.6667
=5067681707* \pi

Volume of Volcano(After 79AD)= (Volume of Volcano(Before 79AD)) - (Volume of Volcano part erupted off)
=(1.4019 * 10^10 * \pi) - (5067681707* \pi)
= 8951318293* \pi

Note to reader: Please check my work. I'm not sure if my solutions are correct or if i did the problem correctly.
Thank you!
 
Last edited:
Mathematics news on Phys.org
We know the radius $r$ of the cone decreases linearly as a function of height $h$, and this linear function contains the two points:

$$(r,h)=(2300,0),\,(0,7950)$$

Thus, using the point-slope formula, we obtain:

$$r(h)=-\frac{2300}{7950}h+2300=2300\left(1-\frac{h}{7950}\right)=\frac{2300}{7950}(7950-h)$$

Now, the volume $V$ of the frustum of a cone is given as:

$$V=\frac{h}{3}\left(A_1+A_2+\sqrt{A_1A_2}\right)$$

where $$A_i=\pi R_i^2$$

Frustum_750.gif


Hence:

$$V=\frac{\pi h}{3}\left(R_1^2+R_2^2+R_1R_2\right)$$

With $h=4200\text{ ft}$, we obtain:

$$R_1=2300\text{ ft}$$

$$R_2=\frac{2300}{7950}(7950-4200)\text{ ft}=\frac{57500}{53}\,\text{ft}$$

And so, we have:

$$V=\frac{\left(4200\text{ ft}\right)\pi}{3}\left(\left(2300\text{ ft}\right)^2+\left(\frac{57500}{53}\,\text{ft}\right)^2+\left(2300\text{ ft}\right)\left(\frac{57500}{53}\,\text{ft}\right)\right)$$

$$V=\frac{35245154000000}{2809}\pi\text{ ft}^3\approx1.2547224635101458\times10^{10}\text{ ft}^3$$

This is different than your result. I see the reason is that when you computed the volume of the part blown off, you computed the height of the part blown off by taking the initial height and subtracting the base radius, when you should have subtracted the final height instead. :)
 
MarkFL said:
We know the radius $r$ of the cone decreases linearly as a function of height $h$, and this linear function contains the two points:

$$(r,h)=(2300,0),\,(0,7950)$$

Thus, using the point-slope formula, we obtain:

$$r(h)=-\frac{2300}{7950}h+2300=2300\left(1-\frac{h}{7950}\right)=\frac{2300}{7950}(7950-h)$$

Now, the volume $V$ of the frustum of a cone is given as:

$$V=\frac{h}{3}\left(A_1+A_2+\sqrt{A_1A_2}\right)$$

where $$A_i=\pi R_i^2$$
Hence:

$$V=\frac{\pi h}{3}\left(R_1^2+R_2^2+R_1R_2\right)$$

With $h=4200\text{ ft}$, we obtain:

$$R_1=2300\text{ ft}$$

$$R_2=\frac{2300}{7950}(7950-4200)\text{ ft}=\frac{57500}{53}\,\text{ft}$$

And so, we have:

$$V=\frac{\left(4200\text{ ft}\right)\pi}{3}\left(\left(2300\text{ ft}\right)^2+\left(\frac{57500}{53}\,\text{ft}\right)^2+\left(2300\text{ ft}\right)\left(\frac{57500}{53}\,\text{ft}\right)\right)$$

$$V=\frac{35245154000000}{2809}\pi\text{ ft}^3\approx1.2547224635101458\times10^{10}\text{ ft}^3$$

This is different than your result. I see the reason is that when you computed the volume of the part blown off, you computed the height of the part blown off by taking the initial height and subtracting the base radius, when you should have subtracted the final height instead. :)
Hello, thank you for your help so far.However, how can I find the final volume of the volcano after 79 AD without the knowledge of the volume of a frostum.
For example, can you solve this problem by subtracting the total volume of the volcano before 79AD minus the volume of the part of the volcano that blew off? And how?
 
ruu said:
Hello, thank you for your help so far.However, how can I find the final volume of the volcano after 79 AD without the knowledge of the volume of a frostum.
For example, can you solve this problem by subtracting the total volume of the volcano before 79AD minus the volume of the part of the volcano that blew off? And how?

I used the formula for the volume of a conical frustum as a means of checking your work, as you requested. Once I found that gave a result different from what you posted, I looked through your work and found the error:

MarkFL said:
...This is different than your result. I see the reason is that when you computed the volume of the part blown off, you computed the height of the part blown off by taking the initial height and subtracting the base radius, when you should have subtracted the final height instead. :)

Make that correction and see if your result then agrees with the result I posted. :D
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 15 ·
Replies
15
Views
6K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K