MHB Find unknowns in equation going from perfect square? to quadratic format?

Click For Summary
The discussion focuses on solving the equation $$(6x+2z)^2-64=(ax+2z+8)(-8+bx+cz)$$ for positive constants a, b, and c. The original poster attempted to expand and equate coefficients but arrived at incorrect values. A suggested method involves equating coefficients from both sides after expanding the equation correctly. The correct values for a, b, and c are identified as a = 6, b = 6, and c = 2. This approach emphasizes the importance of ensuring the equation holds true for all variables involved.
danielw
Messages
5
Reaction score
0
Hi all

I'm trying to work out how to answer this type of problem.

$$(6x+2z)^2-64=(ax+2z+8)(-8+bx+cz)$$ where a, b and c > 0

I have attempted the problem by expanding the brackets:

$$=36x^2+24xz+4z^2-64$$

This is the same as $$(6x+2z)^2-(8)^2$$

Then subtracting from either 'side' of the quadratic and multiplying the result:

$$=((6x+2z)-8)*((6x+2z)+8)$$

So visually comparing these results I got
$$a=6\\
b=2\\
c=2$$

But this is wrong.

I think my method may be wrong.

I'm looking for guidance on how to solve this kind of problem.

I hope one of you can help.

Many thanks

Daniel
 
Mathematics news on Phys.org
Hi danielw and welcome to MHB! :D

The method you're using is usually called "equating coefficients" and it's a good approach. Review your work and try $a=b=6,\,c=2$.
 
Note that, in order to be able to solve for a, b, and c, the equation must be true for all x and y.
 
danielw said:
\text {Solve for }a,b,c: \;(6x+2z)^2-64\:=\: (ax+2z+8)(bx+cz-8)
\text{Expand: }\;36x^2 +24xz + 4z^2 - 64 \;=\;abx^2 + acxz - 8ax + 2bxz +2cz^2 - 16z + 8bx + 8cz - 64

\text{Equate coefficients: }\;\;36 \:=\:ab, \quad 24 \:=\:ac + 2b, \quad 4 \:=\:2c, \quad 8b-8a - 0, \quad 8c - 16 \:=\:0

\text{And we get: }\;\;\boxed{ a = 6,\;b = 6,\;c = 2}
 
Good morning I have been refreshing my memory about Leibniz differentiation of integrals and found some useful videos from digital-university.org on YouTube. Although the audio quality is poor and the speaker proceeds a bit slowly, the explanations and processes are clear. However, it seems that one video in the Leibniz rule series is missing. While the videos are still present on YouTube, the referring website no longer exists but is preserved on the internet archive...

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
10K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
6
Views
2K
  • · Replies 48 ·
2
Replies
48
Views
34K
  • · Replies 4 ·
Replies
4
Views
2K