MHB Is the Equation $ |tanx + cotx| = |tanx| + |cotx| $ True for Any Value of $x$?

  • Thread starter Thread starter DaalChawal
  • Start date Start date
AI Thread Summary
The equation |tanx + cotx| = |tanx| + |cotx| is true for any value of x except at points where tanx or cotx are undefined, specifically at nπ and (2n+1)π/2. Since tanx and cotx share the same sign for all valid x, the equation holds true in those ranges. The discussion references the Triangle Inequality, which states that |a + b| is less than or equal to |a| + |b|, but in this case, equality is achieved when both terms are non-zero. Therefore, the equation is valid as long as x is not at the points where tanx or cotx are undefined. This confirms the equation's validity under specified conditions.
DaalChawal
Messages
85
Reaction score
0
Q. Is $ |tanx + cotx| = |tanx| + |cotx| $ true for any $x?$ If it is true, then find the values of $x$.

My Working -->

Since $tanx$ and $cotx$ always have the same sign, so this holds true for any value of $x$.
 
Mathematics news on Phys.org
Okay I think this should hold true for any $x$ except $n \pi$ , $\frac{(2n+1) \pi }{2}$
Am I correct?
 
In general, $\displaystyle \begin{align*} \left| a + b \right| \not\equiv \left| a \right| + \left| b \right| \end{align*}$, rather $\displaystyle \begin{align*} \left| a + b \right| \leq \left| a \right| + \left| b \right| \end{align*}$. That's called the Triangle Inequality.
 
DaalChawal said:
Q. Is $ |tanx + cotx| = |tanx| + |cotx| $ true for any $x?$ If it is true, then find the values of $x$.

My Working -->

Since $tanx$ and $cotx$ always have the same sign, so this holds true for any value of $x$.
You have to be a bit more careful than this, as Prove It says but you essentially have [math]\left | y + \dfrac{1}{y} \right | = |y| + \left | \dfrac{1}{y} \right |[/math], which is true for [math]y \neq 0[/math].

So, yes.

-Dan
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top