Find Vector \overrightarrow{B_1B} for Triangle ABC

Click For Summary
SUMMARY

The discussion focuses on finding the vector \overrightarrow{B_1B} for triangle ABC with vertices A(4,1,-2), B(2,0,0), and C(-2,3,-5). The solution involves calculating the projection of vector \overrightarrow{AB} onto vector \overrightarrow{AC} using the formula proj_{\overrightarrow{AC}}\overrightarrow{AB}=\frac{\overrightarrow{AB}\cdot \overrightarrow{AC}}{|\overrightarrow{AC}|^2}\cdot \overrightarrow{AC}. The resulting vector \overrightarrow{AB_1} is \left[-\frac{24}{49},\frac{8}{49},-\frac{12}{49}\right], leading to the point B_1=\left(\frac{172}{49},\frac{8}{49},-\frac{-110}{49}\right) and ultimately the vector \overrightarrow{B_1B}=\left[-\frac{74}{49},-\frac{57}{49},\frac{110}{49}\right]. The calculations are confirmed to be correct, provided the scalar product evaluates to zero.

PREREQUISITES
  • Understanding of vector projection
  • Knowledge of dot product calculations
  • Familiarity with vector magnitude
  • Basic geometry of triangles in three-dimensional space
NEXT STEPS
  • Study vector projection techniques in detail
  • Learn about the properties of dot products in vector mathematics
  • Explore the geometric interpretation of vectors in 3D space
  • Investigate applications of vector calculations in physics and engineering
USEFUL FOR

Students studying geometry, mathematics enthusiasts, and anyone involved in physics or engineering requiring vector analysis and projection techniques.

gruba
Messages
203
Reaction score
1

Homework Statement


Given points of a triangle: A(4,1,-2),B(2,0,0),C(-2,3,-5). Line p contains point B, is orthogonal to \overline{AC}, and is coplanar with ABC. Intersection of p and \overline{AC} is the point B_1.
Find vector \overrightarrow{B_1B}.

Homework Equations


-Vector projection
- Dot product
-Magnitude of a vector

The Attempt at a Solution


proj_{\overrightarrow{AC}}\overrightarrow{AB}=\overrightarrow{AB_1}=\frac{\overrightarrow{AB}\cdot \overrightarrow{AC}}{|\overrightarrow{AC}|^2}\cdot \overrightarrow{AC}
\overrightarrow{AB}=[-2,-1,2],\overrightarrow{AC}=[-6,2,-3],|\overrightarrow{AC}|=7
\overrightarrow{AB}\cdot \overrightarrow{AC}=4
\Rightarrow proj_{\overrightarrow{AC}}\overrightarrow{AB}=\overrightarrow{AB_1}=\left[-\frac{24}{49},\frac{8}{49},-\frac{12}{49}\right]

From \overrightarrow{AB_1} we can find the point B_1\Rightarrow B_1=\left(\frac{172}{49},\frac{8}{49},-\frac{-110}{49}\right) \Rightarrow \overrightarrow{B_1B}=\left[-\frac{74}{49},-\frac{57}{49},\frac{110}{49}\right]

Is this correct?
 
Last edited:
Physics news on Phys.org
The reasoning is good, and the answer is correct if a scalar product evaluates to 0
 
  • Like
Likes gruba
gruba said:

Homework Statement


Given points of a triangle: A(4,1,-2),B(2,0,0),C(-2,3,-5). Line p contains point B, is orthogonal to \overline{AC}, and is coplanar with ABC. Intersection of p and \overline{AC} is the point B_1.
Find vector \overrightarrow{B_1B}.

Homework Equations


-Vector projection
- Dot product
-Magnitude of a vector

The Attempt at a Solution


proj_{\overrightarrow{AC}}\overrightarrow{AB}=\overrightarrow{AB_1}=\frac{\overrightarrow{AB}\cdot \overrightarrow{AC}}{|\overrightarrow{AC}|^2}\cdot \overrightarrow{AC}
\overrightarrow{AB}=[-2,-1,2],\overrightarrow{AC}=[-6,2,-3],|\overrightarrow{AC}|=7
\overrightarrow{AB}\cdot \overrightarrow{AC}=4
\Rightarrow proj_{\overrightarrow{AC}}\overrightarrow{AB}=\overrightarrow{AB_1}=\left[-\frac{24}{49},\frac{8}{49},-\frac{12}{49}\right]
From \overrightarrow{AB_1} we can find the point B_1\Rightarrow B_1=\left(\frac{172}{49},\frac{8}{49},-\frac{-110}{49}\right) \Rightarrow \overrightarrow{B_1B}=\left[-\frac{74}{49},-\frac{57}{49},\frac{110}{49}\right]
Is this correct?
Notice that once you have, ##\ \overrightarrow{AB_1}\ ## and ##\ \overrightarrow{AB}\ ##, you can get ##\ \overrightarrow{B_1 B}\ ## from ##\ \overrightarrow{B_1 B}=\overrightarrow{B_1 A}+\overrightarrow{AB}\ ##
 
  • Like
Likes gruba

Similar threads

Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 23 ·
Replies
23
Views
4K
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
8K