MHB Find Where Two Tangent Lines Intersect on a Circle | Math Help

AI Thread Summary
To find the intersection of two tangent lines on a circle, position the circle's center at the origin and align the tangent points with the same x-coordinate, one in the first quadrant and one in the fourth. The relationship between the radius (r), the length of the tangent line (ℓ), and the distance (d) can be expressed using the equation r² + ℓ² = d². By applying the distance formula and the equation of the circle, the problem simplifies to a solvable equation. Ultimately, the distance d can be calculated as d = r²/x, where x is the x-coordinate of the tangent points.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

How can i find where two tangent lines intersect on a circle?

I need math help tonight. Is there a process i need to follow to find out where the lines meet?

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Getty,

We can greatly simplify this problem, if we orient the circle's center at the origin of our coordinate system, and rotate the circle such that the two tangent points have the same $x$-coordinate (where $0<x<r$), one point in the first quadrant, and one in the fourth quadrant.

Please refer to the following diagram:

View attachment 1164

Because $r$ and $\ell$ are perpendicular, we may state:

$$r^2+\ell^2=d^2$$

Using the distance formula, we find:

$$\ell^2=(x-d)^2+y^2$$

and from the equation of the circle, we have:

$$y^2=r^2-x^2$$

Hence, we may now write:

$$r^2+(x-d)^2+r^2-x^2=d^2$$

$$2r^2+x^2-2xd+d^2-x^2=d^2$$

$$r^2-xd=0$$

$$d=\frac{r^2}{x}$$
 

Attachments

  • getty.jpg
    getty.jpg
    8.6 KB · Views: 91
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
2
Views
2K
Replies
2
Views
2K
Replies
59
Views
2K
Replies
4
Views
2K
Replies
4
Views
2K
Replies
2
Views
1K
Back
Top