Finding a complementary subspace ##U## | Linear Algebra

Click For Summary
In finite vector spaces, a subspace W has a complementary subspace U if V can be expressed as the direct sum of U and W, denoted V = U ⊕ W. Any subspace U can be expanded to a basis of the entire vector space V, allowing for the identification of a complementary subspace W. The discussion highlights the challenge of selecting a third element for the basis of V that maintains a unique decomposition of vectors in V. It is emphasized that the chosen third polynomial must not belong to U, and while the Gram-Schmidt procedure is suggested for generating orthogonal bases, it is noted that it is not applicable at this stage of learning. Ultimately, the uniqueness of the decomposition is not inherently required, as different choices of the third vector can lead to valid but distinct bases.
JD_PM
Messages
1,125
Reaction score
156
Homework Statement
Find a complementary subspace ##U## in ##V## i.e. find ##U## such that ##U \oplus W =V##, where ##W = span \{ 1-3X + 2X^2 , 1 + X + 4X^2\}## and ## p_1 (X) = 1 - 7X ##, ## p_2 (X) = 4 - 2X + 6X^2 \in \Bbb R[X]_{\leq 2}##
Relevant Equations
N/A
We only worry about finite vector spaces here.

I have been taught that a subspace ##W## of a vector space ##V## has a complementary subspace ##U## if ##V = U \oplus W##.

Besides, I understand that, given a finite vectorspace ##(\Bbb R, V, +)##, any subspace ##U## of ##V## has a complementary subspace ##W##. Why? Let ##U## be a subspace of ##V## and its basis ##\{u_1, u_2, \dots, u_k \}##. We know that a basis of a subspace can always be expanded to a basis of the vector space i.e. ##\{u_1, u_2, \dots, u_k, w_{k+1}, \dots,w_n \}##. Hence we get ##W = span\{w_{k+1}, \dots,w_n \}##, the complementary subspace of ##U##.

Time to focus on the given exercise.

We note that the vectors spanning ##W## are linearly independent so they conform a basis of ##W##. Hence we can always expand that basis to one of ##V##.

$$\beta = \{ 1-3X + 2X^2 , 1 + X + 4X^2, 3+5X-6X^2\}$$

So the complementary subspace is given by ##U = span \{ 3+5X-6X^2\}##

And the unique decomposition is given by

$$\underbrace{1 - 7X}_{\in V} = \underbrace{4 - 2X + 6X^2}_{\in W} + \underbrace{(-3-5X-6X^2)}_{\in U}$$

Main issue:

1) I chose the third element of the basis of ##V## so that the unique decomposition holds. Is there a way to pick an arbitrary third element and end up with such unique decomposition?

Is the overall idea OK?

Thanks! :biggrin:
 
Physics news on Phys.org
JD_PM said:
Homework Statement:: Find a complementary subspace ##U## in ##V## i.e. find ##U## such that ##U \oplus W =V##, where ##W = span \{ 1-3X + 2X^2 , 1 + X + 4X^2\}## and ## p_1 (X) = 1 - 7X ##, ## p_2 (X) = 4 - 2X + 6X^2 \in \Bbb R[X]_{\leq 2}##
Relevant Equations:: N/A

We only worry about finite vector spaces here.

I have been taught that a subspace ##W## of a vector space ##V## has a complementary subspace ##U## if ##V = U \oplus W##.

Besides, I understand that, given a finite vectorspace ##(\Bbb R, V, +)##, any subspace ##U## of ##V## has a complementary subspace ##W##. Why? Let ##U## be a subspace of ##V## and its basis ##\{u_1, u_2, \dots, u_k \}##. We know that a basis of a subspace can always be expanded to a basis of the vector space i.e. ##\{u_1, u_2, \dots, u_k, w_{k+1}, \dots,w_n \}##. Hence we get ##W = span\{w_{k+1}, \dots,w_n \}##, the complementary subspace of ##U##.

Time to focus on the given exercise.

We note that the vectors spanning ##W## are linearly independent so they conform a basis of ##W##. Hence we can always expand that basis to one of ##V##.

$$\beta = \{ 1-3X + 2X^2 , 1 + X + 4X^2, 3+5X-6X^2\}$$

So the complementary subspace is given by ##U = span \{ 3+5X-6X^2\}##

And the unique decomposition is given by

$$\underbrace{1 - 7X}_{\in V} = \underbrace{4 - 2X + 6X^2}_{\in W} + \underbrace{(-3-5X-6X^2)}_{\in U}$$

Main issue:

1) I chose the third element of the basis of ##V## so that the unique decomposition holds. Is there a way to pick an arbitrary third element and end up with such unique decomposition?

Is the overall idea OK?

Thanks! :biggrin:
If ##\beta ## are linearly independent vectors, which I think they are but haven't checked, then you can take them and choose the bases for ##W## the way you did. I have no idea about the role the ##p_i(x)## play.

Of course, you cannot pick an arbitrary third polynomial since it must not be in ##U##. A general algorithm for such problems is the Gram-Schmidt procedure. It produces orthogonal vectors, which isn't necessary in the case above, but it will be the next step. You can choose any ##\vec{p}\not\in U## as a basis in your case.
 
FactChecker said:
If you have a subspace defined as the span of two polynomials, ##p_1(X), p_2(X)## can't you just use those polynomials directly to define the compliment?: ##\{X\in R^3 : p_1(X)=0 \textrm{ or } p_2(X)=0 \}##

Mmm no clue, honestly. All I know about complementary subspaces is what is below

JD_PM said:
I have been taught that a subspace ##W## of a vector space ##V## has a complementary subspace ##U## if ##V = U \oplus W##.

Besides, I understand that, given a finite vectorspace ##(\Bbb R, V, +)##, any subspace ##U## of ##V## has a complementary subspace ##W##. Why? Let ##U## be a subspace of ##V## and its basis ##\{u_1, u_2, \dots, u_k \}##. We know that a basis of a subspace can always be expanded to a basis of the vector space i.e. ##\{u_1, u_2, \dots, u_k, w_{k+1}, \dots,w_n \}##. Hence we get ##W = span\{w_{k+1}, \dots,w_n \}##, the complementary subspace of ##U##.

fresh_42 said:
Of course, you cannot pick an arbitrary third polynomial since it must not be in ##U##. A general algorithm for such problems is the Gram-Schmidt procedure. It produces orthogonal vectors, which isn't necessary in the case above, but it will be the next step. You can choose any ##\vec{p}\not\in U## as a basis in your case.

Thanks for the idea but I am not allowed to use the Gram-Schmidt procedure because it comes in later chapters.

It is just that it felt unnatural to fit a third element of the basis of ##V## such that the following equation holds uniquely.

JD_PM said:
$$\underbrace{1 - 7X}_{\in V} = \underbrace{4 - 2X + 6X^2}_{\in W} + \underbrace{(-3-5X-6X^2)}_{\in U}$$

That's why I ask for feedback; doesn't it look odd to you?
 
https://www.physicsforums.com/goto/post?id=6516205
If you have a subspace defined as the span of two polynomials,
can't you just use those polynomials directly to define the compliment?
JD_PM said:
Mmm no clue, honestly. All I know about complementary subspaces is what is below
Sorry. I got confused. I have deleted that post.
 
There is no intuition demanding uniqueness. Imagine a plane, say a square, on your desk. Any vector outside this plane, pointing up (or down) allows you to build a complete basis of three-dimensional space, i.e. a coordinate system. Once you have chosen a specific one, your coordinates become unique. However, all others define different coordinate systems.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...