Finding a formula for displacement of a mass on a spring using v.

AI Thread Summary
The discussion revolves around deriving the formula for displacement of a mass on a spring using velocity. The user starts with the energy conservation equation 1/2mv^2 = 1/2kx^2 and derives v^2 = mg^2/k but struggles to progress further. Key insights include the distinction between vertical and horizontal spring systems, emphasizing that at equilibrium, x=0 and v equals the maximum velocity. The conversation highlights that there is no standard equation for this scenario, but references to energy conservation principles are made. Ultimately, the focus is on finding the maximal displacement from the equilibrium position, also known as amplitude.
hamishmidd
Messages
1
Reaction score
0
Homework Statement
A mass m is hung from a spring with spring constant k. The mass is kicked upwards such
that it has a speed of v when the mass is at the equilibrium position. What is the maximal displacement of the mass from the equilibrium position as the mass subsequently
oscillates?
Relevant Equations
Ek=1/2mv^2, U=1/2kx^2, kx=mg (at equilibrium position)
I have tried to answer this using the relevant equations I am provided on my formula sheet, however I get stuck pretty close to the end. I start with 1/2mv^2=1/2kx^2 at the equilibrium position, and kx=mg, x=mg/k. This gets me to v^2=mg^2/k, but I don't know where to go from there. The potential answers are:
(A) x = v*sqrt(m/k) (B) x =v^2/2g (C) x =sqrt(2mv/k) (D) x = vt +1/2gt^2 (E) None of the above
 
Physics news on Phys.org
A vertical spring-mass system oscillates about its equilibrium position exactly like a horizontal spring-mass system. The only difference is that the vertical spring is at equilibrium when the spring is stretched by ##\Delta x=mg/k## whilst the horizontal spring is not stretched at equilibrium.

Answer this question as if you had a horizontal spring. Note that you are asked to find the maximal displacement from the equilibrium position. What is another name for it?
 
hamishmidd said:
I start with 1/2mv^2=1/2kx^2 at the equilibrium position,
Further to @kuruman's advice, I'll point out that there is no such standard equation.
There's ##1/2mv_{max}^2=1/2kx_{max}^2##, and there's ##1/2mv^2(t)+1/2kx^2(t)=E##, where x is displacement from equilibrium.
At equilibrium, ##x=0, v=v_{max}##.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top