Finding a of n from Sn partial sum

  • Thread starter Thread starter freshman2013
  • Start date Start date
  • Tags Tags
    Partial Sum
Click For Summary
To find an expression for an from the given partial sum Sn = (-2n+9)/(-6n+15), the correct approach is to calculate an using the formula an = Sn - S(n-1). The user successfully derived specific values for a2 through a8 but is struggling to identify a generalized expression. Observations indicate that the denominators of the terms increase by 24 after a4, suggesting a pattern. The discussion emphasizes the importance of using the formula correctly rather than substituting numbers directly. A generalized expression for an can be derived by analyzing the pattern in the calculated terms.
freshman2013
Messages
43
Reaction score
0

Homework Statement



suppose that the partial sum of the series (sigma)n=1,infinity an is given by the partial sum Sn = (-2n+9)/(-6n+15). Find an expression for an when n>1

Homework Equations



Sn= (-2n+9)/(6n+15

The Attempt at a Solution


So I attempted to subtract S(n-1) from S(n) to get each term for an and got the following terms
a2=8/9
3=-8/3
4=8/9
5=8/45
6=8/105
7=8/189
8=8/297
How am I supposed to come up with a generalized expression from these terms, or am I wrong from the first step of doing S(n)-S(n-1) to get those terms for an? The only pattern I can recognize is that after a4, the difference of the denominators increase by 24 from one term to the next.

Homework Statement


Homework Equations


The Attempt at a Solution

 
Last edited:
Physics news on Phys.org
freshman2013 said:

Homework Statement



suppose that the partial sum of the series (sigma)n=1,infinity an is given by the partial sum Sn = (-2n+9)/(6n+15). Find an expression for an when n>1

Homework Equations



Sn= (-2n+9)/(6n+15

The Attempt at a Solution


So I attempted to subtract S(n-1) from S(n) to get each term for an and got the following terms
a2=8/9
3=-8/3
4=8/9
5=8/45
6=8/105
7=8/189
8=8/297
How am I supposed to come up with a generalized expression from these terms, or am I wrong from the first step of doing S(n)-S(n-1) to get those terms for an? The only pattern I can recognize is that after a4, the difference of the denominators increase by 24 from one term to the next.

Homework Statement


Homework Equations


The Attempt at a Solution


##S_{n}-S_{n-1}=a_n##. So take your expression for ##S_n## and subtract the same expression with n-1 substituted for n. Putting numbers in isn't the way to do it.
 
  • Like
Likes 1 person
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
7
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
5K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K