Finding a Unique Solution to a System of Equations

Click For Summary
The discussion focuses on the conditions for determining unique solutions in a system of equations involving parameters a and b. It highlights that if a=2 and b≠-1, the system is inconsistent, while a≠2 and b+4a^2-4a-7≠0 leads to a unique solution. The case where a=2 and b=-1 results in infinitely many solutions, as it simplifies to a true statement. Participants note that the condition b+4a^2-4a-7=0 is overlooked in the discussion but does yield a unique solution. Overall, the conversation clarifies the implications of these parameters on the system's solvability.
The Head
Messages
137
Reaction score
2
Homework Statement
Find when the system of equations is unique:

x-y-2z-2w= 3
y+z+w= 4a+3
z+3w= -4a-4
(-a+2)w= b+4a^2-4a-7
Relevant Equations
Full Rank = Unique
It makes sense that a=2 would cause problems because then we wouldn't have a matrix of full rank and we'd be unable to determine a value for w. But the key also says that when b+4a^2-4a-7≠0. Why is that an issue? For example, if a=1, that just says implies that w=0. Through back-subsitution, we get z=-8, y=15, x=2. And the solution: (2, 15,-8, 0) is unique still because it's the only possible solution, right?

What am I missing here?
 
  • Like
Likes Delta2
Physics news on Phys.org
I think you are correct.

If ##a = 2## then there are no solutions, unless also ##b + 4a^2 -4a -7 = 0## when there are infinitely many. Is that what the book means?
 
  • Like
Likes The Head
Hmm, yeah, maybe it was just the wording that is a little ambiguous. It says for a=2 AND b≠-1, the solution is inconsistent (makes sense, because then you get something like 0=1), for a≠2 AND b+4a^2-4a-7≠0, it is unique, and for a=2 AND b=-1 there are infinitely many solutions (also makes sense, since then you get 0=0). As long as I'm not missing something fundamental and the basic conditions I'm looking for are correct, I'm not too worried about it.

Thanks for helping out with this. I appreciate it.
 
  • Like
Likes Delta2
The Head said:
Hmm, yeah, maybe it was just the wording that is a little ambiguous. It says for a=2 AND b≠-1, the solution is inconsistent (makes sense, because then you get something like 0=1), for a≠2 AND b+4a^2-4a-7≠0, it is unique, and for a=2 AND b=-1 there are infinitely many solutions (also makes sense, since then you get 0=0). As long as I'm not missing something fundamental and the basic conditions I'm looking for are correct, I'm not too worried about it.

Thanks for helping out with this. I appreciate it.
But that list leaves out a≠2 AND b+4a^2-4a-7=0, and as you say that case does yield a unique solution. So you are right, the "AND b+4a^2-4a-7≠0" is entirely redundant.
 
  • Like
Likes The Head
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 2 ·
Replies
2
Views
952
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K