- #1
Rectifier
Gold Member
- 313
- 4
I have to find a primitive function below using the Euler formulas for ##\sin x## and ## \cos x##
The problem
$$ \int e^{2x} \sin 3x \ dx $$
Relevant equations
## \cos x = \frac{e^{ix}+e^{-ix}}{2} \\ \sin x = \frac{e^{ix}-e^{-ix}}{2i} \\ \\ \int e^{ix} \ dx = \frac{e^{ix}}{i} ##
The attempt
## \int e^{2x} \sin 3x \ dx = \int e^{2x} \left( \frac{ e^{i3x}-e^{-i3x} }{ 2i } \right) \ dx = \frac{ 1 }{ 2i } \int e^{ 2x }e^{i3x}-e^{2x}e^{-i3x} \ dx = \frac{1}{2i} \int e^{(2+3i)x}-e^{(2-3i)x} \ dx \\ \frac{1}{2i} \int e^{(2+3i)x}-e^{(2-3i)x} \ dx = \frac{1}{2i} \left( \frac{e^{(2+3i)x}}{2+3i}- \frac{e^{(2-3i)x}}{2-3i} \right) \ + C ##
Polar form for ##z=2+i##
##2+3i = \sqrt{13}e^{i \arctan \left( \frac{3}{2} \right) }##
Polar form for ##z=2-i##
##2-3i = \sqrt{13}e^{- i \arctan \left( \frac{3}{2} \right) }##I am looking for a way to advance from this step in my solution process and am therefore not interested in any alternative ways other than using Eulers forumlas above to solve this problem.
Please help.
The problem
$$ \int e^{2x} \sin 3x \ dx $$
Relevant equations
## \cos x = \frac{e^{ix}+e^{-ix}}{2} \\ \sin x = \frac{e^{ix}-e^{-ix}}{2i} \\ \\ \int e^{ix} \ dx = \frac{e^{ix}}{i} ##
The attempt
## \int e^{2x} \sin 3x \ dx = \int e^{2x} \left( \frac{ e^{i3x}-e^{-i3x} }{ 2i } \right) \ dx = \frac{ 1 }{ 2i } \int e^{ 2x }e^{i3x}-e^{2x}e^{-i3x} \ dx = \frac{1}{2i} \int e^{(2+3i)x}-e^{(2-3i)x} \ dx \\ \frac{1}{2i} \int e^{(2+3i)x}-e^{(2-3i)x} \ dx = \frac{1}{2i} \left( \frac{e^{(2+3i)x}}{2+3i}- \frac{e^{(2-3i)x}}{2-3i} \right) \ + C ##
Polar form for ##z=2+i##
##2+3i = \sqrt{13}e^{i \arctan \left( \frac{3}{2} \right) }##
Polar form for ##z=2-i##
##2-3i = \sqrt{13}e^{- i \arctan \left( \frac{3}{2} \right) }##I am looking for a way to advance from this step in my solution process and am therefore not interested in any alternative ways other than using Eulers forumlas above to solve this problem.
Please help.