Finding area and volume of bounded region via integration

Sociomath
Messages
9
Reaction score
0
Hi,

I just need these solutions checked.
Thank you in advance!

Consider the region bounded by the following curves ##y=x-3, y=5-x, \text{and}\ y=3##:

1.) set up an integral expression that would give the area of the region of y as a function of x:

##y = x-3 = 5-x##
##x + x - 3 - 5 = 0##
##2x-8=0##
##x = 4##
##\displaystyle \int_0^3 |\left(2x-8\right)|\ dx##

2.) set up an integral expression that would give the area of the region of x as a function of y:

##\displaystyle \int_0^5 |\left(5-y\right)|##

3.) compute the area of the region by evaluating one of the expressions in (1.) or (2.):

##\displaystyle \int_0^3 |\left(2x-8\right)|\ dx##
##\left(x-8\right)+\ \text{C}##
##\displaystyle = \lim_{x \to 0^{+}} ((x-8)x)=0##
##\displaystyle = \lim_{x \to 3^{-}} ((x-8)x)=-15##
##\displaystyle |-15-0| = 15##


4.) set up an integral expression that would give the volume of the solid created by rotating the region about y = 1, using the disk/washer method:

##\displaystyle \pi \int_0^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##


5.) find the volume of the solid by evaluating the integral/integrals in (4.):

##\displaystyle \pi \int_0^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##
##=\ -\dfrac{29}{6}\pi##
##\approx 15\ \text{cubic units}##

6.) set up an integral expression that would give the volume of the solid created by rotating the region about y = -2, using the disk/washer method:

##\displaystyle \pi \int_{-2}^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##


7.) compute the volume of the solid by evaluating the integral or integrals in (6.):

##\displaystyle \pi \int_{-2}^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##
##=\ -\dfrac{27}{2}\pi##
##\approx 42\ \text{cubic units}##
 
Physics news on Phys.org
Sociomath said:
Hi,

I just need these solutions checked.
Thank you in advance!

Consider the region bounded by the following curves ##y=x-3, y=5-x, \text{and}\ y=3##:

1.) set up an integral expression that would give the area of the region of y as a function of x:

##y = x-3 = 5-x##
##x + x - 3 - 5 = 0##
##2x-8=0##
##x = 4##
##\displaystyle \int_0^3 |\left(2x-8\right)|\ dx##

2.) set up an integral expression that would give the area of the region of x as a function of y:

##\displaystyle \int_0^5 |\left(5-y\right)|##

3.) compute the area of the region by evaluating one of the expressions in (1.) or (2.):

##\displaystyle \int_0^3 |\left(2x-8\right)|\ dx##
##\left(x-8\right)+\ \text{C}##
##\displaystyle = \lim_{x \to 0^{+}} ((x-8)x)=0##
##\displaystyle = \lim_{x \to 3^{-}} ((x-8)x)=-15##
##\displaystyle |-15-0| = 15##4.) set up an integral expression that would give the volume of the solid created by rotating the region about y = 1, using the disk/washer method:

##\displaystyle \pi \int_0^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##5.) find the volume of the solid by evaluating the integral/integrals in (4.):

##\displaystyle \pi \int_0^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##
##=\ -\dfrac{29}{6}\pi##
##\approx 15\ \text{cubic units}##

6.) set up an integral expression that would give the volume of the solid created by rotating the region about y = -2, using the disk/washer method:

##\displaystyle \pi \int_{-2}^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##7.) compute the volume of the solid by evaluating the integral or integrals in (6.):

##\displaystyle \pi \int_{-2}^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##
##=\ -\dfrac{27}{2}\pi##
##\approx 42\ \text{cubic units}##

I would suggest you start over and begin by drawing a picture of the region. You are going to need two integrals using either a dx or dy variable. Also, what bounds the region on the left?
 
Sociomath said:
Hi,

Consider the region bounded by the following curves ##y=x-3, y=5-x, \text{and}\ y=3##:

1.) set up an integral expression that would give the area of the region of y as a function of x:

##y = x-3 = 5-x##
##x + x - 3 - 5 = 0##
##2x-8=0##
##x = 4##
##\displaystyle \int_0^3 |\left(2x-8\right)|\ dx##

You were correct in identifying x=4 as an intersection point, and y = 1 there; but the other two intersection points must occur where y = 3, so x is certainly NOT zero or 3 ! So there is no reason to integrate from 0 to 3 with respect to x.
 
  • Like
Likes Sociomath
Thanks LCKurtz and az_lender!

1. ##\displaystyle \int_2^4 \left(3-\left(5-x\right)\right)dx\,+\,\displaystyle \int_4^6\left(\left(3-\left(x-3\right)\right)\right)dx##
::
::

2. ##\displaystyle \int_1^3 ((y+3-(5-y))dy\,=\,\int_1^3 (2y-2))dy##
::
::

3. Using (1.) from above:
##\displaystyle \int_2^4 \left(3-\left(5-x\right)\right)dx\,+\,\displaystyle \int_4^6\left(\left(3-\left(x-3\right)\right)\right)dx##
##=\,\dfrac{x^2}{2}\,+\,C##
##\displaystyle\lim_{x\to 2^{+}} \left(\dfrac{x^2}{2}\right)\,=\,2##
##\displaystyle\lim_{x\to 4^{-}} \left(\dfrac{x^2}{2}\right)\,=\,8##

##\text{From the above}\,=\,8-2\,=\,6##
::
::

4. ##\displaystyle \int_2^4 \pi ((2)^2-((3-(5-x)))^2 dx\,+\,\int_4^6 \pi ((2)^2\,-\,(3-(x-3)))^2 dx##
::
::

5. From (4.) above:
##\dfrac{16\left(1-3\pi\right)\pi}{3}##
::
::

6. ##\displaystyle \int_1^3 \pi \left(6-\left(5-y\right)\right)^2\,-\,\left(6\,-\,\left(y\,+\,3\right)\right)^2dy\
\left(6-\left(5-y\right)\right)^2\,-\,\displaystyle \int \left(6\,-\,\left(y\,+\,3\right)\right)^2dy\
\,=\,4\left(y\,-\,2\right)y\,+\,\dfrac{28}{3}\,+\,C##
::
::

7. From (6.) above:
##\displaystyle\lim_{y\to 1^{+}} (4(y-2))y\,+\,\dfrac{28}{3})\,=\,\dfrac{16\pi}{3}##
##\displaystyle\lim_{y\to 3^{-}} (4(y-2))y\,+\,\dfrac{28}{3})\,=\,\dfrac{64\pi}{3}##

##=\,\dfrac{64\pi}{3}\,-\,\dfrac{16\pi}{3}\,=\,16\pi##
 
Last edited:
Sociomath said:
1. ##\displaystyle \int_2^4 \left(3-\left(5-x\right)\right)dx\,+\,\displaystyle \int_4^6\left(\left(3-\left(x-3\right)\right)\right)dx##

2. $$ \int_1^3 (y+3)-(5-y)dy$$

Those look correct for the triangular area.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top