Finding area and volume of bounded region via integration

Click For Summary
SUMMARY

The forum discussion focuses on calculating the area and volume of a region bounded by the curves \(y = x - 3\), \(y = 5 - x\), and \(y = 3\). The area is computed using the integral \(\int_2^4 (3 - (5 - x)) \, dx + \int_4^6 (3 - (x - 3)) \, dx\), resulting in an area of 6 square units. The volume of the solid formed by rotating the region about \(y = 1\) is determined using the disk/washer method, yielding a volume of \(\frac{16(1 - 3\pi)}{3}\) cubic units. Additionally, the volume when rotated about \(y = -2\) is calculated to be \(\frac{64\pi}{3} - \frac{16\pi}{3} = 16\pi\) cubic units.

PREREQUISITES
  • Understanding of integral calculus, specifically area and volume calculations.
  • Familiarity with the disk/washer method for volume of revolution.
  • Knowledge of setting up integrals based on bounded regions.
  • Ability to evaluate definite integrals and apply limits.
NEXT STEPS
  • Study the disk/washer method in detail for calculating volumes of solids of revolution.
  • Learn about finding intersection points of curves to set up integrals accurately.
  • Explore applications of integration in calculating areas of more complex regions.
  • Practice evaluating definite integrals with varying limits and functions.
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus, geometry, and engineering applications involving integration for area and volume calculations.

Sociomath
Messages
9
Reaction score
0
Hi,

I just need these solutions checked.
Thank you in advance!

Consider the region bounded by the following curves ##y=x-3, y=5-x, \text{and}\ y=3##:

1.) set up an integral expression that would give the area of the region of y as a function of x:

##y = x-3 = 5-x##
##x + x - 3 - 5 = 0##
##2x-8=0##
##x = 4##
##\displaystyle \int_0^3 |\left(2x-8\right)|\ dx##

2.) set up an integral expression that would give the area of the region of x as a function of y:

##\displaystyle \int_0^5 |\left(5-y\right)|##

3.) compute the area of the region by evaluating one of the expressions in (1.) or (2.):

##\displaystyle \int_0^3 |\left(2x-8\right)|\ dx##
##\left(x-8\right)+\ \text{C}##
##\displaystyle = \lim_{x \to 0^{+}} ((x-8)x)=0##
##\displaystyle = \lim_{x \to 3^{-}} ((x-8)x)=-15##
##\displaystyle |-15-0| = 15##


4.) set up an integral expression that would give the volume of the solid created by rotating the region about y = 1, using the disk/washer method:

##\displaystyle \pi \int_0^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##


5.) find the volume of the solid by evaluating the integral/integrals in (4.):

##\displaystyle \pi \int_0^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##
##=\ -\dfrac{29}{6}\pi##
##\approx 15\ \text{cubic units}##

6.) set up an integral expression that would give the volume of the solid created by rotating the region about y = -2, using the disk/washer method:

##\displaystyle \pi \int_{-2}^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##


7.) compute the volume of the solid by evaluating the integral or integrals in (6.):

##\displaystyle \pi \int_{-2}^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##
##=\ -\dfrac{27}{2}\pi##
##\approx 42\ \text{cubic units}##
 
Physics news on Phys.org
Sociomath said:
Hi,

I just need these solutions checked.
Thank you in advance!

Consider the region bounded by the following curves ##y=x-3, y=5-x, \text{and}\ y=3##:

1.) set up an integral expression that would give the area of the region of y as a function of x:

##y = x-3 = 5-x##
##x + x - 3 - 5 = 0##
##2x-8=0##
##x = 4##
##\displaystyle \int_0^3 |\left(2x-8\right)|\ dx##

2.) set up an integral expression that would give the area of the region of x as a function of y:

##\displaystyle \int_0^5 |\left(5-y\right)|##

3.) compute the area of the region by evaluating one of the expressions in (1.) or (2.):

##\displaystyle \int_0^3 |\left(2x-8\right)|\ dx##
##\left(x-8\right)+\ \text{C}##
##\displaystyle = \lim_{x \to 0^{+}} ((x-8)x)=0##
##\displaystyle = \lim_{x \to 3^{-}} ((x-8)x)=-15##
##\displaystyle |-15-0| = 15##4.) set up an integral expression that would give the volume of the solid created by rotating the region about y = 1, using the disk/washer method:

##\displaystyle \pi \int_0^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##5.) find the volume of the solid by evaluating the integral/integrals in (4.):

##\displaystyle \pi \int_0^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##
##=\ -\dfrac{29}{6}\pi##
##\approx 15\ \text{cubic units}##

6.) set up an integral expression that would give the volume of the solid created by rotating the region about y = -2, using the disk/washer method:

##\displaystyle \pi \int_{-2}^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##7.) compute the volume of the solid by evaluating the integral or integrals in (6.):

##\displaystyle \pi \int_{-2}^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##
##=\ -\dfrac{27}{2}\pi##
##\approx 42\ \text{cubic units}##

I would suggest you start over and begin by drawing a picture of the region. You are going to need two integrals using either a dx or dy variable. Also, what bounds the region on the left?
 
Sociomath said:
Hi,

Consider the region bounded by the following curves ##y=x-3, y=5-x, \text{and}\ y=3##:

1.) set up an integral expression that would give the area of the region of y as a function of x:

##y = x-3 = 5-x##
##x + x - 3 - 5 = 0##
##2x-8=0##
##x = 4##
##\displaystyle \int_0^3 |\left(2x-8\right)|\ dx##

You were correct in identifying x=4 as an intersection point, and y = 1 there; but the other two intersection points must occur where y = 3, so x is certainly NOT zero or 3 ! So there is no reason to integrate from 0 to 3 with respect to x.
 
  • Like
Likes   Reactions: Sociomath
Thanks LCKurtz and az_lender!

1. ##\displaystyle \int_2^4 \left(3-\left(5-x\right)\right)dx\,+\,\displaystyle \int_4^6\left(\left(3-\left(x-3\right)\right)\right)dx##
::
::

2. ##\displaystyle \int_1^3 ((y+3-(5-y))dy\,=\,\int_1^3 (2y-2))dy##
::
::

3. Using (1.) from above:
##\displaystyle \int_2^4 \left(3-\left(5-x\right)\right)dx\,+\,\displaystyle \int_4^6\left(\left(3-\left(x-3\right)\right)\right)dx##
##=\,\dfrac{x^2}{2}\,+\,C##
##\displaystyle\lim_{x\to 2^{+}} \left(\dfrac{x^2}{2}\right)\,=\,2##
##\displaystyle\lim_{x\to 4^{-}} \left(\dfrac{x^2}{2}\right)\,=\,8##

##\text{From the above}\,=\,8-2\,=\,6##
::
::

4. ##\displaystyle \int_2^4 \pi ((2)^2-((3-(5-x)))^2 dx\,+\,\int_4^6 \pi ((2)^2\,-\,(3-(x-3)))^2 dx##
::
::

5. From (4.) above:
##\dfrac{16\left(1-3\pi\right)\pi}{3}##
::
::

6. ##\displaystyle \int_1^3 \pi \left(6-\left(5-y\right)\right)^2\,-\,\left(6\,-\,\left(y\,+\,3\right)\right)^2dy\
\left(6-\left(5-y\right)\right)^2\,-\,\displaystyle \int \left(6\,-\,\left(y\,+\,3\right)\right)^2dy\
\,=\,4\left(y\,-\,2\right)y\,+\,\dfrac{28}{3}\,+\,C##
::
::

7. From (6.) above:
##\displaystyle\lim_{y\to 1^{+}} (4(y-2))y\,+\,\dfrac{28}{3})\,=\,\dfrac{16\pi}{3}##
##\displaystyle\lim_{y\to 3^{-}} (4(y-2))y\,+\,\dfrac{28}{3})\,=\,\dfrac{64\pi}{3}##

##=\,\dfrac{64\pi}{3}\,-\,\dfrac{16\pi}{3}\,=\,16\pi##
 
Last edited:
Sociomath said:
1. ##\displaystyle \int_2^4 \left(3-\left(5-x\right)\right)dx\,+\,\displaystyle \int_4^6\left(\left(3-\left(x-3\right)\right)\right)dx##

2. $$ \int_1^3 (y+3)-(5-y)dy$$

Those look correct for the triangular area.
 

Similar threads

Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
12
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
3K
  • · Replies 20 ·
Replies
20
Views
2K
Replies
2
Views
1K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K