Finding (C): Halfway Between Equilibrium and End Point

  • Thread starter Thread starter hidemi
  • Start date Start date
  • Tags Tags
    Equilibrium Point
Click For Summary
The discussion focuses on understanding the motion between points A and B in simple harmonic motion, particularly finding the time for specific segments of the motion. It establishes that the time intervals T_OB, T_BO, T_OA, and T_AO are equal to T/4 due to the symmetry of the sine curve. The method proposed for calculating the time T_QB involves first determining T_OQ and then subtracting it from T_OB. The position of point Q is identified as x = A/2, leading to a sine equation to solve for T_OQ. The conversation concludes with a participant expressing satisfaction with the solution provided.
hidemi
Messages
206
Reaction score
36
Homework Statement
A particle is in simple harmonic motion with period T. At time t = 0 it is halfway
between the equilibrium point and an end point of its motion, traveling toward the
end point. The next time it is at the same place is:
A. t =T
B. t =T/2
C. t =T/3
D. t = T/4
E. none of the above

The answer is C
Relevant Equations
X = A cos(wt+c)
I think (D) is correct since it is half way between the equilibrium point and and the end point of its motion, it is a quarter of the total distance. How to get (C)?
 
Physics news on Phys.org
I think t=T is ,though not least, the time it is in the same place. B to D are inappropriate because halfway means anywhere between the top and the bottom.
 
can you find the angle between ##t_{1}## and ##t_{2}##
time.jpg
 
Suppose the motion is between points A and B:

A P O Q B

The centre is O , the end points are A and B.
P is the midpoint of AO.
Q is the midpoint of OB.

Say we want the time for Q→B→Q.

The following times are equal:
##T_{OB} = T_{BO} = T_{OA} = T_{AO} = \frac T 4##
This a due to the inherent symmetry in a cycle of simple harmonic motion. It can be seen by looking at the shape of a sine curve.

But ##T_{AP}, T_{PO}##, etc. are not equal to any 'obvious' value (not ##\frac T 8## for example). Look at a sine curve carefully.

With O at x=0, taking x=0 when t=0 and assuming velocity at t=0 is positive, we can describe the motion by:$$x(t) = Asin \left[ \left( \frac {2\pi} T \right) t \right]$$(Using sine rather than cosine is most convenient here.)

Suppose we want ##T_{QB}##. (The required ‘return time' will be twice this.)

I think the simplest method to find ##T_{QB}## is first to find ##T_{OQ}## and then subtract it from ##T_{OB}## (since we already know that ##T_{OB} =\frac T 4##).

The position of Q is x = ##\frac A 2## which gives:$$\frac A 2 = Asin \left[ \left( \frac {2\pi} T \right) T_{OQ} \right]$$Solve for ##T_{OQ}##. And take it from there.

Someone might post a simpler method, but the above method is easier than it might initially appear!
 
Last edited:
Steve4Physics said:
Suppose the motion is between points A and B:

A P O Q B

The centre is O , the end points are A and B.
P is the midpoint of AO.
Q is the midpoint of OB.

Say we want the time for Q→B→Q.

The following times are equal:
##T_{OB} = T_{BO} = T_{OA} = T_{AO} = \frac T 4##
This a due to the inherent symmetry in a cycle of simple harmonic motion. It can be seen by looking at the shape of a sine curve.

But ##T_{AP}, T_{PO}##, etc. are not equal to any 'obvious' value (not ##\frac T 8## for example). Look at a sine curve carefully.

With O at x=0, taking x=0 when t=0 and assuming velocity at t=0 is positive, we can describe the motion by:$$x(t) = Asin \left[ \left( \frac {2\pi} T \right) t \right]$$(Using sine rather than cosine is most convenient here.)

Suppose we want ##T_{QB}##. (The required ‘return time' will be twice this.)

I think the simplest method to find ##T_{QB}## is first to find ##T_{OQ}## and then subtract it from ##T_{OB}## (since we already know that ##T_{OB} =\frac T 4##).

The position of Q is x = ##\frac A 2## which gives:$$\frac A 2 = Asin \left[ \left( \frac {2\pi} T \right) T_{OQ} \right]$$Solve for ##T_{OQ}##. And take it from there.

Someone might post a simpler method, but the above method is easier than it might initially appear!
I got it! Thanks so much!
 
Thread 'Chain falling out of a horizontal tube onto a table'
My attempt: Initial total M.E = PE of hanging part + PE of part of chain in the tube. I've considered the table as to be at zero of PE. PE of hanging part = ##\frac{1}{2} \frac{m}{l}gh^{2}##. PE of part in the tube = ##\frac{m}{l}(l - h)gh##. Final ME = ##\frac{1}{2}\frac{m}{l}gh^{2}## + ##\frac{1}{2}\frac{m}{l}hv^{2}##. Since Initial ME = Final ME. Therefore, ##\frac{1}{2}\frac{m}{l}hv^{2}## = ##\frac{m}{l}(l-h)gh##. Solving this gives: ## v = \sqrt{2g(l-h)}##. But the answer in the book...

Similar threads

  • · Replies 5 ·
Replies
5
Views
904
  • · Replies 1 ·
Replies
1
Views
819
Replies
4
Views
2K
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
6
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
25
Views
1K