Finding (C): Halfway Between Equilibrium and End Point

  • Thread starter Thread starter hidemi
  • Start date Start date
  • Tags Tags
    Equilibrium Point
Click For Summary
The discussion focuses on understanding the motion between points A and B in simple harmonic motion, particularly finding the time for specific segments of the motion. It establishes that the time intervals T_OB, T_BO, T_OA, and T_AO are equal to T/4 due to the symmetry of the sine curve. The method proposed for calculating the time T_QB involves first determining T_OQ and then subtracting it from T_OB. The position of point Q is identified as x = A/2, leading to a sine equation to solve for T_OQ. The conversation concludes with a participant expressing satisfaction with the solution provided.
hidemi
Messages
206
Reaction score
36
Homework Statement
A particle is in simple harmonic motion with period T. At time t = 0 it is halfway
between the equilibrium point and an end point of its motion, traveling toward the
end point. The next time it is at the same place is:
A. t =T
B. t =T/2
C. t =T/3
D. t = T/4
E. none of the above

The answer is C
Relevant Equations
X = A cos(wt+c)
I think (D) is correct since it is half way between the equilibrium point and and the end point of its motion, it is a quarter of the total distance. How to get (C)?
 
Physics news on Phys.org
I think t=T is ,though not least, the time it is in the same place. B to D are inappropriate because halfway means anywhere between the top and the bottom.
 
can you find the angle between ##t_{1}## and ##t_{2}##
time.jpg
 
Suppose the motion is between points A and B:

A P O Q B

The centre is O , the end points are A and B.
P is the midpoint of AO.
Q is the midpoint of OB.

Say we want the time for Q→B→Q.

The following times are equal:
##T_{OB} = T_{BO} = T_{OA} = T_{AO} = \frac T 4##
This a due to the inherent symmetry in a cycle of simple harmonic motion. It can be seen by looking at the shape of a sine curve.

But ##T_{AP}, T_{PO}##, etc. are not equal to any 'obvious' value (not ##\frac T 8## for example). Look at a sine curve carefully.

With O at x=0, taking x=0 when t=0 and assuming velocity at t=0 is positive, we can describe the motion by:$$x(t) = Asin \left[ \left( \frac {2\pi} T \right) t \right]$$(Using sine rather than cosine is most convenient here.)

Suppose we want ##T_{QB}##. (The required ‘return time' will be twice this.)

I think the simplest method to find ##T_{QB}## is first to find ##T_{OQ}## and then subtract it from ##T_{OB}## (since we already know that ##T_{OB} =\frac T 4##).

The position of Q is x = ##\frac A 2## which gives:$$\frac A 2 = Asin \left[ \left( \frac {2\pi} T \right) T_{OQ} \right]$$Solve for ##T_{OQ}##. And take it from there.

Someone might post a simpler method, but the above method is easier than it might initially appear!
 
Last edited:
Steve4Physics said:
Suppose the motion is between points A and B:

A P O Q B

The centre is O , the end points are A and B.
P is the midpoint of AO.
Q is the midpoint of OB.

Say we want the time for Q→B→Q.

The following times are equal:
##T_{OB} = T_{BO} = T_{OA} = T_{AO} = \frac T 4##
This a due to the inherent symmetry in a cycle of simple harmonic motion. It can be seen by looking at the shape of a sine curve.

But ##T_{AP}, T_{PO}##, etc. are not equal to any 'obvious' value (not ##\frac T 8## for example). Look at a sine curve carefully.

With O at x=0, taking x=0 when t=0 and assuming velocity at t=0 is positive, we can describe the motion by:$$x(t) = Asin \left[ \left( \frac {2\pi} T \right) t \right]$$(Using sine rather than cosine is most convenient here.)

Suppose we want ##T_{QB}##. (The required ‘return time' will be twice this.)

I think the simplest method to find ##T_{QB}## is first to find ##T_{OQ}## and then subtract it from ##T_{OB}## (since we already know that ##T_{OB} =\frac T 4##).

The position of Q is x = ##\frac A 2## which gives:$$\frac A 2 = Asin \left[ \left( \frac {2\pi} T \right) T_{OQ} \right]$$Solve for ##T_{OQ}##. And take it from there.

Someone might post a simpler method, but the above method is easier than it might initially appear!
I got it! Thanks so much!
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 5 ·
Replies
5
Views
954
  • · Replies 1 ·
Replies
1
Views
834
Replies
4
Views
2K
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
6
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
25
Views
1K