Finding (C): Halfway Between Equilibrium and End Point

  • Thread starter Thread starter hidemi
  • Start date Start date
  • Tags Tags
    Equilibrium Point
AI Thread Summary
The discussion focuses on understanding the motion between points A and B in simple harmonic motion, particularly finding the time for specific segments of the motion. It establishes that the time intervals T_OB, T_BO, T_OA, and T_AO are equal to T/4 due to the symmetry of the sine curve. The method proposed for calculating the time T_QB involves first determining T_OQ and then subtracting it from T_OB. The position of point Q is identified as x = A/2, leading to a sine equation to solve for T_OQ. The conversation concludes with a participant expressing satisfaction with the solution provided.
hidemi
Messages
206
Reaction score
36
Homework Statement
A particle is in simple harmonic motion with period T. At time t = 0 it is halfway
between the equilibrium point and an end point of its motion, traveling toward the
end point. The next time it is at the same place is:
A. t =T
B. t =T/2
C. t =T/3
D. t = T/4
E. none of the above

The answer is C
Relevant Equations
X = A cos(wt+c)
I think (D) is correct since it is half way between the equilibrium point and and the end point of its motion, it is a quarter of the total distance. How to get (C)?
 
Physics news on Phys.org
I think t=T is ,though not least, the time it is in the same place. B to D are inappropriate because halfway means anywhere between the top and the bottom.
 
can you find the angle between ##t_{1}## and ##t_{2}##
time.jpg
 
Suppose the motion is between points A and B:

A P O Q B

The centre is O , the end points are A and B.
P is the midpoint of AO.
Q is the midpoint of OB.

Say we want the time for Q→B→Q.

The following times are equal:
##T_{OB} = T_{BO} = T_{OA} = T_{AO} = \frac T 4##
This a due to the inherent symmetry in a cycle of simple harmonic motion. It can be seen by looking at the shape of a sine curve.

But ##T_{AP}, T_{PO}##, etc. are not equal to any 'obvious' value (not ##\frac T 8## for example). Look at a sine curve carefully.

With O at x=0, taking x=0 when t=0 and assuming velocity at t=0 is positive, we can describe the motion by:$$x(t) = Asin \left[ \left( \frac {2\pi} T \right) t \right]$$(Using sine rather than cosine is most convenient here.)

Suppose we want ##T_{QB}##. (The required ‘return time' will be twice this.)

I think the simplest method to find ##T_{QB}## is first to find ##T_{OQ}## and then subtract it from ##T_{OB}## (since we already know that ##T_{OB} =\frac T 4##).

The position of Q is x = ##\frac A 2## which gives:$$\frac A 2 = Asin \left[ \left( \frac {2\pi} T \right) T_{OQ} \right]$$Solve for ##T_{OQ}##. And take it from there.

Someone might post a simpler method, but the above method is easier than it might initially appear!
 
Last edited:
Steve4Physics said:
Suppose the motion is between points A and B:

A P O Q B

The centre is O , the end points are A and B.
P is the midpoint of AO.
Q is the midpoint of OB.

Say we want the time for Q→B→Q.

The following times are equal:
##T_{OB} = T_{BO} = T_{OA} = T_{AO} = \frac T 4##
This a due to the inherent symmetry in a cycle of simple harmonic motion. It can be seen by looking at the shape of a sine curve.

But ##T_{AP}, T_{PO}##, etc. are not equal to any 'obvious' value (not ##\frac T 8## for example). Look at a sine curve carefully.

With O at x=0, taking x=0 when t=0 and assuming velocity at t=0 is positive, we can describe the motion by:$$x(t) = Asin \left[ \left( \frac {2\pi} T \right) t \right]$$(Using sine rather than cosine is most convenient here.)

Suppose we want ##T_{QB}##. (The required ‘return time' will be twice this.)

I think the simplest method to find ##T_{QB}## is first to find ##T_{OQ}## and then subtract it from ##T_{OB}## (since we already know that ##T_{OB} =\frac T 4##).

The position of Q is x = ##\frac A 2## which gives:$$\frac A 2 = Asin \left[ \left( \frac {2\pi} T \right) T_{OQ} \right]$$Solve for ##T_{OQ}##. And take it from there.

Someone might post a simpler method, but the above method is easier than it might initially appear!
I got it! Thanks so much!
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top