Mindscrape
- 1,854
- 1
I am expanding the function f(t) = e^{i \omega t} from (-π,π) as a complex Fourier series where w is not an integer. I am stuck figuring out how the series expands with n.
c_n = \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i \omega t} e^{-int} dt
Join exponentials
c_n = \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i t(\omega - n)
Then integrate the function and evaluate the limits
c_n = \frac{1}{2 \pi} \frac{1}{i(\omega - n)} \frac{dw}{dt} (e^{i \pi (\omega - n)} - e^{ -i \pi(\omega - n)})
Use the identity for sinx
c_n = \frac{1}{\pi} \frac{1}{(\omega - n)} \frac{dw}{dt} sin(\pi \omega - \pi n)
This is the point when I am not quite sure if I am done, or I need to do something more. Should I just put this into back into the expression for the complex Fourier series?
f(x) = \sum_{n=-\infty}^{n=+\infty} c_n e^{int}
c_n = \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i \omega t} e^{-int} dt
Join exponentials
c_n = \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i t(\omega - n)
Then integrate the function and evaluate the limits
c_n = \frac{1}{2 \pi} \frac{1}{i(\omega - n)} \frac{dw}{dt} (e^{i \pi (\omega - n)} - e^{ -i \pi(\omega - n)})
Use the identity for sinx
c_n = \frac{1}{\pi} \frac{1}{(\omega - n)} \frac{dw}{dt} sin(\pi \omega - \pi n)
This is the point when I am not quite sure if I am done, or I need to do something more. Should I just put this into back into the expression for the complex Fourier series?
f(x) = \sum_{n=-\infty}^{n=+\infty} c_n e^{int}
Last edited: