Finding Cousins of Giuga Numbers: Can You Solve This Prime Number Puzzle?

  • Context: Comp Sci 
  • Thread starter Thread starter kbannister
  • Start date Start date
  • Tags Tags
    Numbers
Click For Summary
SUMMARY

The discussion centers on the identification of "Cousins" of Giuga Numbers, defined as positive integers that satisfy a specific relationship involving their prime factors. The first few Giuga Numbers include 30, 858, 1772, and 66,198. The challenge is to find unique combinations of primes that meet the modified equation k/(n+1) for k values ranging from 1 to 6. MATLAB is utilized for brute force searching, and the user has successfully identified the first eight cousins but struggles to find the ninth and tenth.

PREREQUISITES
  • Understanding of Giuga Numbers and their properties
  • Familiarity with prime factorization and unique prime factors
  • Proficiency in MATLAB programming, particularly with commands like "factor," "size," and "unique"
  • Basic knowledge of number theory concepts, including square-free numbers
NEXT STEPS
  • Explore advanced algorithms for generating Giuga Numbers efficiently
  • Investigate the properties of Carmichael numbers and their relationship to Giuga Numbers
  • Learn about combinatorial techniques for generating subsets of prime numbers
  • Study the implications of the Riemann Hypothesis on prime number distribution
USEFUL FOR

Mathematicians, number theorists, and engineers interested in prime number puzzles and computational methods for exploring number theory.

  • #31
pbuk said:
or eqivalently work with exact fractions: ## \frac{1}{2} +\frac{1}{3} + \frac{1}{7} + \frac{1}{41} - \frac{1}{1722} = \frac{861 + 574 + 246 + 42 - 1}{1722} = 1 = \frac{k}{6 + 1}, k = 7 ##
Both points made by @pbuk are very important.
As an example, I wrote a Python program to calculate 1 + 1/2 + 1/3 + ... + 1/n. This isn't the same as the calculation done in this thread, but it shows the effects of error accumulation for different calculation algorithms.

Ex. 1 - Calculate 1 + 1/2 + 1/3 + ... + 1/15
By writing the above as a single fraction over a common denominator of 15! the result was 3.3182289932289932
By brute force addition of the fractions the result was 3.3182289932289937
The difference between the two results is about ##4.5 \times 10^{-16}##.

Ex. 2 - Calculate 1 + 1/2 + 1/3 + ... + 1/20
Same results from both methods

Ex. 3 - Calculate 1 + 1/2 + 1/3 + ... + 1/50
By writing the above as a single fraction over a common denominator of 30! the result was 4.499205338329425
My brute force addition of the fractions the result was 4.499205338329423
The difference between these two results is about ##1.8 \times 10^{-15}##
 
Physics news on Phys.org
  • #32
kbannister said:
That's what I used to verify my first 8 "cousins", not "floating point arithmetic."
But you did not use that to eliminate any candidates, you used floating point arithmetic which resulted in you missing 24,695,930 = product(2, 5, 7, 71, 4969), k = 6.

kbannister said:
I have found the #9 6th Giuga cousin. It is 1,925,224,630, and its factors are 2 5 7 101 307 887,
resulting in a RHS of 6/7.
I posted this solution in #26.
 
  • #33
pbuk said:
But you did not use that to eliminate any candidates, you used floating point arithmetic which resulted in you missing

pbuk said:
When you have made incorrect assumptions about a person it is conventional to start with an apology*, however...I missed this condition from your first post. It would have helped if you had restated it in your post #23.Do you have any tone of communication that is not condescending? I had inferred that 6th cousin referred to the condition ## n = 6 ##.There you go again with the condescension; do you not see how foolish this sounds?Nope, you have still missed one (the 6th) < 25,000,000 with k = 6. Its greatest prime factor is much larger than for the other solutions, more than 4,900, which is probably why it is lost in the roundoff error of double precision arithmetic. If you want to find it then, I repeat, you need to use the modified version of your equation that uses only integers (no extended range arithmetic is required: the 53 bit integers of IEEE 754 double precision are plenty for candidates up to about ## 10^{11} ##).

I have already given you the 10th.

* It is particularly inappropriate to make assumptions about a persons family: fortunately all my grandparents were alive during the 60's and 70's; if this were not the case your assertion that they were 'dancing to the Stones' would have been distressing rather than simply foolish.

pbuk said:
I posted this solution in #26.
Excellent PbuK! I did miss that one - either I did not go far enough to find 4969, or did not use close enough tolerances. I did revise my algorithm to use loops based on only prime factors (although even there I did not go up to a factor as high as 4969).

I think this put the problem to rest.
 
Last edited by a moderator:

Similar threads

Replies
33
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 80 ·
3
Replies
80
Views
10K
  • · Replies 36 ·
2
Replies
36
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K