Finding Eigenvalues of Matrix A: Wrong Answer, What Am I Doing Wrong?

  • Context: MHB 
  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Eigenvalues Matrix
Click For Summary
SUMMARY

The discussion centers on the calculation of eigenvalues for the matrix A, defined as A = \(\begin{pmatrix} 1 &1 &k \\ 1 &1 &k \\ 1 &1 &k \end{pmatrix}\). The user initially calculated eigenvalues as 0, 1, and (k+1), while the correct eigenvalues, as confirmed by both the book and Maple, are 0 and (k+2). The error arose from miscalculating the determinant of \(\lambda I - A\), which should yield \(\det(\lambda I - A) = \lambda^2(\lambda - k - 2)\).

PREREQUISITES
  • Understanding of eigenvalues and eigenvectors
  • Familiarity with matrix operations
  • Knowledge of determinants
  • Experience with symbolic computation tools like Maple
NEXT STEPS
  • Review the calculation of determinants for 3x3 matrices
  • Learn about the characteristic polynomial and its role in finding eigenvalues
  • Explore the use of Maple for symbolic matrix computations
  • Study the implications of eigenvalues in linear transformations
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, as well as anyone working with matrix computations and eigenvalue problems.

Yankel
Messages
390
Reaction score
0
Hello all,

I have a matrix A and I am looking for it's eigenvalues. No matter what I do, I find that the eigenvalues are 0, 1 and (k+1), while the answer of both the book and Maple is 0 and (k+2). I tried two different technical approaches, both led to the same place.

The matrix is:

\[A=\begin{pmatrix} 1 &1 &k \\ 1 &1 &k \\ 1 &1 &k \end{pmatrix}\]

I have stated with calculating

\[\lambda I-A\]

which is

\[A=\begin{pmatrix} \lambda -1 &-1 &-k \\ -1 &\lambda -1 &-k \\ -1 &-1 &\lambda -k \end{pmatrix}\]

Now I calculate the determinant of this matrix. Whatever I do, I get the wrong answer. Can you please assist ?

Thank you.
 
Physics news on Phys.org
Hi Yankel,

I believe you actually want to find $\text{det }(A-\lambda I)=0$ in order to calculate the eigenvalues. What do you get when you try that?
 
Is your determinant [math]\lambda ^3 - \lambda ^2(k + 2)[/math]?

-Dan
 
Last edited by a moderator:
Yankel said:
Hello all,

I have a matrix A and I am looking for it's eigenvalues. No matter what I do, I find that the eigenvalues are 0, 1 and (k+1), while the answer of both the book and Maple is 0 and (k+2). I tried two different technical approaches, both led to the same place.

The matrix is:

\[A=\begin{pmatrix} 1 &1 &k \\ 1 &1 &k \\ 1 &1 &k \end{pmatrix}\]

I have stated with calculating

\[\lambda I-A\]

which is

\[A=\begin{pmatrix} \lambda -1 &-1 &-k \\ -1 &\lambda -1 &-k \\ -1 &-1 &\lambda -k \end{pmatrix}\]

Now I calculate the determinant of this matrix. Whatever I do, I get the wrong answer. Can you please assist ?

Thank you.
Check your calculations again! You should find that $\det(\lambda I - A) = \begin{vmatrix} \lambda -1 &-1 &-k \\ -1 &\lambda -1 &-k \\ -1 &-1 &\lambda -k \end{vmatrix} = \lambda^2(\lambda-k-2).$
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
8
Views
2K