MHB Finding GCD in Gaussian Integers

Click For Summary
The discussion focuses on finding a generator for the principal ideal <6+7i, 5+3i> in the Gaussian integers Z[i], which requires determining the greatest common divisor (gcd) of the two complex numbers. The Euclidean algorithm is suggested as a method to find the gcd, leading to the calculation that 1+4i is a potential gcd. However, the user encounters a remainder when checking this result, prompting further verification of their calculations. The norm of Gaussian integers is emphasized, indicating that the norm of the gcd must divide the norms of the original numbers, which are 85 and 34, respectively. The conversation highlights the importance of the Euclidean algorithm and the norms in solving problems involving Gaussian integers.
ArcanaNoir
Messages
778
Reaction score
4
The problem asks to find a generator of the principal ideal <6+7i, 5+3i> in Z.

It is my understanding that such a generator must be a greatest common divisor of 6+7i and 5+3i. So, let's call this guy d, we should have d(a+bi)=6+7i and d(c+di)=5+3i.

I'm not really sure how to find d. If I divide 6+7i by a+bi I get \frac{(6a+7b)+(7a-6b)i}{a^2+b^2} and I don't see how this helps.

I'm new to Gaussian integers. Any hints on how to work with them would be appreciated.
 
Physics news on Phys.org
Okay I made "progress". Didn't solve it but I have more effort to offer.

I remembered the Euclidean algorithm can be used to find the gcd of two numbers.

it goes like this:
a=q_0b+r \\ b=q_1r_0+r_1 \\<br /> r_0 = q_2r_1+r_2
and so on until the last non-zero remainder, which will be the gcd.

So I did this:
6+7i=(5+3i)(1)+(1+4i) \\<br /> 5+3i=(1+4i)(1-i)+0
so I determined the gcd is 1+4i.
Then I wanted to check that this was actually a divisor of 6+7i, but I got a remainder >_<

So I will now be checking my calculations. Am I on the right track now?

Lol I fixed it! This has been a great help :) Sometimes just knowing you're listening gets the job done. (heart)
 
Last edited:
ArcanaNoir said:
The problem asks to find a generator of the principal ideal <6+7i, 5+3i> in Z.

It is my understanding that such a generator must be a greatest common divisor of 6+7i and 5+3i. So, let's call this guy d, we should have d(a+bi)=6+7i and d(c+di)=5+3i.

I'm not really sure how to find d. If I divide 6+7i by a+bi I get \frac{(6a+7b)+(7a-6b)i}{a^2+b^2} and I don't see how this helps.

I'm new to Gaussian integers. Any hints on how to work with them would be appreciated.


The norm of a Gaussian integer $a+bi$ is defined as $N(a+bi)=a^2+b^2$.
If we can say $d\ |\ a+bi$, then it follows that $N(d)\ |\ N(a+bi)$.
\begin{array}{}
N(6+7i)&=&85&=&5\cdot 17 \\
N(5+3i)&=&34&=&2\cdot 17
\end{array}
Therefore $N(d)\ |\ 17$.

Furthermore, if we have $d = \gcd(u, v)$, then we also have $d = \gcd(u-v, v) = \gcd(u, v-u)$.
This is the basis of the euclidean algorithm, that can also be applied here.

Edit: Ah! I see you just did so. You'd be on the right track then. :o
 
I like Serena said:
The norm of a Gaussian integer $a+bi$ is defined as $N(a+bi)=a^2+b^2$.
If we can say $d|a+bi$, then it follows that $N(d)\ |\ N(a+bi)$.
\begin{array}{}
N(6+7i)&=&85&=&5\cdot 17 \\
N(5+3i)&=&34&=&2\cdot 17
\end{array}
Therefore $N(d)\ |\ 17$.

Furthermore, if we have $d = \gcd(u, v)$, then we also have $d = \gcd(u-v, v) = \gcd(u, v-u)$.
This is the basis of the euclidean algorithm, that can also be applied here.

Edit: Ah! I see you just did so. You'd be on the right track then. :o
You're so inspirational ILS, you're at the level where you are feeding me insight telepathically!
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 6 ·
Replies
6
Views
7K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
39
Views
5K
Replies
1
Views
1K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K