1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Finding hypberbolic/exponential limit

  1. Mar 9, 2008 #1
    [SOLVED] finding hypberbolic/exponential limit

    1. The problem statement, all variables and given/known data
    Find:
    [tex]\mathop{\lim} \limits_{x \to \infty} \frac{cosh(2x)}{e^2^x}[/tex]

    2. Relevant equations
    [tex]cosh = \frac{e^x+e^-^x}{2}[/tex]

    3. The attempt at a solution
    [tex]\mathop{\lim} \limits_{x \to \infty} \frac{cosh(2x)}{e^2^x} \rightarrow \frac{\frac{e^2^x+e^-^2^x}{2}}{e^2^x} \rightarrow \frac{e^2^x+e^-^2^x}{2}*\frac{1}{e^2^x} \rightarrow \frac{\ln}{\ln} (\frac{e^2^x+e^-^2^x}{2e^2^x}) \rightarrow \frac{2x}{2x\ln2} - \frac{2x}{2x\ln2} = 0[/tex]

    Hey, it's me again. This latex script is groovy. Am I on the right track here? Cheers.
     
  2. jcsd
  3. Mar 9, 2008 #2
    [tex]\lim_{x\rightarrow\infty}\frac{\cosh{2x}}{e^{2x}}[/tex]

    [tex]\lim_{x\rightarrow\infty}\frac{e^{2x}+e^{-2x}}{2e^{2x}}[/tex]

    [tex]\frac 1 2\lim_{x\rightarrow\infty}\left(\frac{e^{2x}}{e^{2x}}+\frac{e^{-2x}}{e^{2x}}\right)[/tex]

    Take it from here ...
     
    Last edited: Mar 9, 2008
  4. Mar 9, 2008 #3

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    I have no idea what
    [tex]\frac{\ln}{\ln} (\frac{e^2^x+e^-^2^x}{2e^2^x}) \[/tex]
    means!
     
  5. Mar 9, 2008 #4
    Thanks for the replies.

    I thought I should take the ln of the fraction to eliminate the exponents. However, rocophysics' reply indicates this strategy was incorrect. Unfortunately, I am still confused.

    On account of the cosh(2x) in the original problem, I believe steps 2 and 3 quoted above should read as follows:

    [tex]\lim_{x\rightarrow\infty}\frac{e^{2x}+e^{-2x}}{2e^{2x}}[/tex]

    [tex]\frac 1 2\lim_{x\rightarrow\infty}\left(\frac{e^2^x}{e^{2x}}+\frac{e^{-2x}}{e^{2x}}\right)[/tex]

    and then maybe...

    [tex]\frac 1 2\lim_{x\rightarrow\infty}\left(2\right) = 1[/tex]

    ?
     
  6. Mar 9, 2008 #5
    SHOOT!!! So sorry :) Thank you for fixing it ... I was so caught up on the LaTeX, lol.

    So your answer is 1/2
     
  7. Mar 9, 2008 #6
    Hmmm. If [tex]\left(\frac{e^2^x}{e^{2x}}+\frac{e^{-2x}}{e^{2x}}\right)=2[/tex] shouldn't the answer be 1?

    Thanks!
     
  8. Mar 9, 2008 #7
    I pulled out the 1/2 infront of the limit.

    [tex]\frac 1 2\lim_{x\rightarrow\infty}\left(\frac{e^{2x}}{e^{2 x}}+\frac{e^{-2x}}{e^{2x}}\right)[/tex]

    [tex]\frac 1 2\lim_{x\rightarrow\infty}\left(1+\frac{1}{e^{4x}}\right)[/tex]

    [tex]\frac 1 2\lim_{x\rightarrow\infty}\left(1+0\right)[/tex]
     
  9. Mar 9, 2008 #8
    Aha! I've got it now. Thanks.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Finding hypberbolic/exponential limit
  1. Exponential limits (Replies: 18)

Loading...