1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Finding hypberbolic/exponential limit

  1. Mar 9, 2008 #1
    [SOLVED] finding hypberbolic/exponential limit

    1. The problem statement, all variables and given/known data
    [tex]\mathop{\lim} \limits_{x \to \infty} \frac{cosh(2x)}{e^2^x}[/tex]

    2. Relevant equations
    [tex]cosh = \frac{e^x+e^-^x}{2}[/tex]

    3. The attempt at a solution
    [tex]\mathop{\lim} \limits_{x \to \infty} \frac{cosh(2x)}{e^2^x} \rightarrow \frac{\frac{e^2^x+e^-^2^x}{2}}{e^2^x} \rightarrow \frac{e^2^x+e^-^2^x}{2}*\frac{1}{e^2^x} \rightarrow \frac{\ln}{\ln} (\frac{e^2^x+e^-^2^x}{2e^2^x}) \rightarrow \frac{2x}{2x\ln2} - \frac{2x}{2x\ln2} = 0[/tex]

    Hey, it's me again. This latex script is groovy. Am I on the right track here? Cheers.
  2. jcsd
  3. Mar 9, 2008 #2


    [tex]\frac 1 2\lim_{x\rightarrow\infty}\left(\frac{e^{2x}}{e^{2x}}+\frac{e^{-2x}}{e^{2x}}\right)[/tex]

    Take it from here ...
    Last edited: Mar 9, 2008
  4. Mar 9, 2008 #3


    User Avatar
    Science Advisor

    I have no idea what
    [tex]\frac{\ln}{\ln} (\frac{e^2^x+e^-^2^x}{2e^2^x}) \[/tex]
  5. Mar 9, 2008 #4
    Thanks for the replies.

    I thought I should take the ln of the fraction to eliminate the exponents. However, rocophysics' reply indicates this strategy was incorrect. Unfortunately, I am still confused.

    On account of the cosh(2x) in the original problem, I believe steps 2 and 3 quoted above should read as follows:


    [tex]\frac 1 2\lim_{x\rightarrow\infty}\left(\frac{e^2^x}{e^{2x}}+\frac{e^{-2x}}{e^{2x}}\right)[/tex]

    and then maybe...

    [tex]\frac 1 2\lim_{x\rightarrow\infty}\left(2\right) = 1[/tex]

  6. Mar 9, 2008 #5
    SHOOT!!! So sorry :) Thank you for fixing it ... I was so caught up on the LaTeX, lol.

    So your answer is 1/2
  7. Mar 9, 2008 #6
    Hmmm. If [tex]\left(\frac{e^2^x}{e^{2x}}+\frac{e^{-2x}}{e^{2x}}\right)=2[/tex] shouldn't the answer be 1?

  8. Mar 9, 2008 #7
    I pulled out the 1/2 infront of the limit.

    [tex]\frac 1 2\lim_{x\rightarrow\infty}\left(\frac{e^{2x}}{e^{2 x}}+\frac{e^{-2x}}{e^{2x}}\right)[/tex]

    [tex]\frac 1 2\lim_{x\rightarrow\infty}\left(1+\frac{1}{e^{4x}}\right)[/tex]

    [tex]\frac 1 2\lim_{x\rightarrow\infty}\left(1+0\right)[/tex]
  9. Mar 9, 2008 #8
    Aha! I've got it now. Thanks.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook