How do you find the inverse of metric tensor when there are off-diagonals?(adsbygoogle = window.adsbygoogle || []).push({});

More specifivally, given the (Kerr) metric,

$$ d \tau^2 = g_{tt} dt^2 + 2g_{t \phi} dt d\phi +g_{rr} dr^2 + g_{\theta \theta} d \theta^2 + g_{\phi \phi} d \phi^2 + $$

we have the metric tensor;

$$ g_{\mu \nu} = \begin{pmatrix}

g_{tt} & 0 & 0 & g_{t \phi} \\

0 & g_{rr} & 0 & 0 \\

0 & 0 & g_{\theta \theta} & 0 \\

g_{\phi t} & 0 & 0 & g_{\phi \phi} \\

\end{pmatrix} $$

In "A First Course in General Relativity", Schutz say that since the only off-diagonal element involves ##t## and ##\phi##, the contravariant components ##g^{rr}## and ##g^{\theta \theta}## are given by ##g^{rr} = \frac{1}{g_{rr}}## and ##g^{\theta \theta} = \frac{1}{g_{\theta \theta}}##. And then invert the matrix

\begin{pmatrix}

g_{tt} & g_{t \phi} \\

g_{\phi t} & g_{\phi \phi} \\

\end{pmatrix}

to find ##g^{tt}##, ##g^{\phi t}## and ## g^{\phi \phi} ##. I don't get why we can do that. Is it some kind on generalised version for the inverse of a diagonal matrix.

If ## A = \begin{pmatrix}

a_{11} & 0 & 0 & 0 \\

0 & a_{22} & 0 & 0 \\

0 & 0 & a_{33} & 0 \\

0 & 0 & 0 & a_{44} \\

\end{pmatrix} ##

then ## A^{-1} = \begin{pmatrix}

\frac{1}{a_{11}} & 0 & 0 & 0 \\

0 & \frac{1}{a_{22}} & 0 & 0 \\

0 & 0 & \frac{1}{a_{33}} & 0 \\

0 & 0 & 0 & \frac{1}{a_{44}} \\

\end{pmatrix} ##

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Finding inverse metric tensor when there are off-diagonal terms

**Physics Forums | Science Articles, Homework Help, Discussion**