To write matrices or other math formulas, use LaTeX. There are a number of tutorials on the internet. On this board you begin LaTeX code by [ tex ] (without the spaces) and end with [ \tex ] (without the spaces). You can do "in line" LaTeX with [ itex ] and [ /itex ]. To do a matrix use \ begin{bmatrix} and \ end{bmatrix} (without the spaces) for a matrix with braces:
\begin{bmatrix}4 & 4 & 1 \\ 12 & 12 & 3\\ 36 & 36 & 9\end{bmatrix}
use "pmatrix" to get the same thing with ( ):
\begin{pmatrix}4 & 4 & 1 \\ 12 & 12 & 3\\ 36 & 36 & 9\end{pmatrix}
Matrix E1 =
4 4 1
12 12 3
36 36 9
No, it's not. That is (A+ 2I)^2. Isn't E_1= A(A+ 2I)^2? (I don't know what that "a" in the formula was supposed to be.)
If I have done the calculation correctly,
E_1= A(A+ 2I)^2= \begin{bmatrix}12 & 12 & 3 \\ 36 & 36 & 9\\ 108 & 108 & 27\end{bmatrix}
the kernel of E_1 would be the set of all (x, y, z) such that
\begin{bmatrix}12 & 12 3 \\ 36 & 36 & 9\\ 108 & 108 & 27\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix}= \begin{bmatrix}12x+ 12y+ 3z \\ 36x+ 36y+ 9z \\ 108x+ 108y+ 27z\end{bmatrix}= \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}
which gives the three equations 12x+ 12y+ 3z= 0, 36x+ 36y+ 9z= 0, 108x+ 108y+ 27z= 0 which are all multiples of one another. In fact, they all reduce to 4x+ 4y+ z= 0 or z= -4x- 4y. That means that any vector in the kernel can be written as
\begin{bmatrix}x \\ y \\ z\end{bmatrix}= \begin{bmatrix}x \\ y \\ -4x- 4y\end{bmatrix}= x\begin{bmatrix}1 \\ 0 \\ -4\end{bmatrix}+ \begin{bmatrix}0 \\ 1 \\ -4\end{bmatrix}
so the kernel is the two-dimensional subspace spanned by those two vectors.
The Image of E_1 is the set of all (x, y, z) such that
\begin{bmatrix}12 & 12 3 \\ 36 & 36 & 9\\ 108 & 108 & 27\end{bmatrix}\begin{bmatrix}a \\ b\\ c \end{bmatrix}= \begin{bmatrix}12a+ 12b+ 3c \\ 36a+ 36y+ 9z \\ 108x+ 108y+ 27z\end{bmatrix}= \begin{bmatrix}x \\ y \\ z\end{bmatrix}
for some (a, b, c). That gives the three equations 12a+ 12b+ 3c= x, 36b+ 36c+ 9z= y, and 108a+ 108b+ 27c= z. If we subtract 3 times the first equation from the second we get y- 3x= 0. If we subtract 3 times the second equation from the third, we get z- 3y= 0. That is, z= 3y= 3(3x)= 9x. Any vector in the Image of E_1 must be of the form
\begin{bmatrix}x \\ y \\ z \end{bmatrix}= \begin{bmatrix} x \\ 3x \\ 9x\end{bmatrix}= x\begin{bmatrix}1 \\ 3 \\ 9\end{bmatrix}
However, that may have nothing to do with your problem because it is not at all clear how you intended to define "E_1".