Finding the angular speed of a hinged rod without using torque or acceleration.

Click For Summary
The discussion focuses on calculating the angular speed of a hinged rod without using torque or acceleration. The center of mass is determined to be at the midpoint of the rod, and the torque is calculated based on the gravitational force acting on it. A mistake is identified regarding the angle used in the torque calculation, as the initial position is 30 degrees above horizontal, not vertical. Participants suggest that the angle changes as the rod falls, complicating the angular acceleration. The conversation concludes with a request for alternative methods to solve the problem without relying on torque or acceleration principles.
Crystal037
Messages
167
Reaction score
7
Homework Statement
A rod of length 50cm is pivoted at one end. It is raised such that it makes an angle 30 degrees from the horizontal as shown and released from rest. It's angular speed when it passes through the horizontal will be
Relevant Equations
wf^2 - wi^2 = 2*alpha*theta,
w=angular velocity
Torque =F*r
Torque =I*alpha
The centre of mass of the rod would be at the middle of the rod i.e. at
l/2=[50*10^(-2)]/2
The force responsible for torque will be acting downwards = mg
The Torque = mg*l/2*sin(30) =mg*l/4
We know that Torque=I*alpha
Hence alpha = mg*l/(4*I)
Moment of inertia of rod about the end= ml^2/12 + ml^2/4 (parallel axis theorem) =ml^2/3
Hence alpha=3mgl/(4ml^2) =3g/4l
Now wf^2- wi^2 =2*alpha *theta
=2*3g/4l*pi/6 since theta =pi/6 since it starts from rest wi=0
Hence wf^2 = 2*3*10/(4*0.5)*pi/6
Hence wf= 3.96
But the answer is sqrt(30). Apparently they haven't considered the angle pi/6. Where am I wrong?
 
Physics news on Phys.org
Crystal037 said:
The Torque = mg*l/2*sin(30) =mg*l/4
Two problems with that.
The initial position is 30 degrees above horizontal, not 30 degrees from vertical.
The angle will change as the rod falls, so the angular acceleration increases.

Can you think of an approach that avoids torques and accelerations?
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
744
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
2K
Replies
12
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K