MHB Finding the Distance from Point P to AC on an ABCD.EFGH Cube

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
  • Tags Tags
    Ac Cube Point
Monoxdifly
MHB
Messages
288
Reaction score
0
Given an ABCD.EFGH cube whose its side length is 8 cm. The point P is within AB so that AP = 3PH. The distance between P to AC is ...
A. $$2\sqrt3$$ cm
B. $$3\sqrt3$$ cm
C. $$2\sqrt6$$ cm
D. $$3\sqrt6$$ cm
E. $$4\sqrt6$$ cm

So AH is $$8\sqrt2$$ cm and PH = $$6\sqrt2$$. What do I do now? Is the triangle HPC a right triangle?
 
Mathematics news on Phys.org
Monoxdifly said:
Given an ABCD.EFGH cube whose its side length is 8 cm. The point P is within AB so that AP = 3PH. The distance between P to AC is ...
A. $$2\sqrt3$$ cm
B. $$3\sqrt3$$ cm
C. $$2\sqrt6$$ cm
D. $$3\sqrt6$$ cm
E. $$4\sqrt6$$ cm

So AH is $$8\sqrt2$$ cm and PH = $$6\sqrt2$$. What do I do now? Is the triangle HPC a right triangle?
This sounds wrong. If P lies on AB then it must be closer to A than to H. So the condition AP = 3PH is impossible.
 
Sorry, I meant P is within AH. Sigh, why did I make a lot of typos last night?
 
My method is to use coordinates, taking the vertices of the cube as
$A = (8,0,0),$
$B = (0,0,0),$
$C = (0,8,0),$
$D = (8,8,0),$
$E = (8,0,8),$
$F = (0,0,8),$
$G = (0,8,8),$
$H = (8,8,8).$
(Of course, that is not the only way to assign the vertices. I was working from a sketch in which it was convenient to take $B$ as the origin.)

The point $P$ is then $(8,6,6)$. A point on $AC$ is given by $(t,8-t,0)$. The distance $d$ from that point to $P$ satisfies $d^2 = (t-8)^2 + (2-t)^2 + 6^2$. If you minimise that by calculus, you find that $t=5$, and $d = 3\sqrt6$.

Edit. If you don't want to use calculus, you can do it algebraically by completing the square: $$d^2 = (t-8)^2 + (2-t)^2 + 6^2 = 2t^2 - 20t + 104 = 2(t-5)^2 + 54.$$ That clearly has minimum value 54, when $t=5$. So $d = \sqrt{54} = 3\sqrt6$.
 
Last edited:
I ended up solving the problem with trigonometry instead of algebra and calculus. Thanks, anyway. It's always nice to see different approaches.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top