Finding the Distance from Point P to AC on an ABCD.EFGH Cube

  • Context: MHB 
  • Thread starter Thread starter Monoxdifly
  • Start date Start date
  • Tags Tags
    Ac Cube Point
Click For Summary
SUMMARY

The discussion centers on calculating the distance from point P to line AC in an ABCD.EFGH cube with a side length of 8 cm. The point P is defined as (8, 6, 6), and the coordinates of line AC are represented as (t, 8-t, 0). Through calculus, the minimum distance is determined to be 3√6 cm when t equals 5. An alternative algebraic method using the completion of the square confirms this result, demonstrating the versatility of problem-solving approaches in geometry.

PREREQUISITES
  • Understanding of 3D coordinate geometry
  • Familiarity with calculus for optimization
  • Knowledge of algebraic techniques such as completing the square
  • Basic concepts of geometric distances in three-dimensional space
NEXT STEPS
  • Study the principles of 3D coordinate geometry
  • Learn optimization techniques using calculus
  • Explore algebraic methods for minimizing functions
  • Investigate geometric properties of cubes and their diagonals
USEFUL FOR

Mathematicians, geometry enthusiasts, students studying calculus and algebra, and anyone interested in spatial reasoning and optimization problems.

Monoxdifly
MHB
Messages
288
Reaction score
0
Given an ABCD.EFGH cube whose its side length is 8 cm. The point P is within AB so that AP = 3PH. The distance between P to AC is ...
A. $$2\sqrt3$$ cm
B. $$3\sqrt3$$ cm
C. $$2\sqrt6$$ cm
D. $$3\sqrt6$$ cm
E. $$4\sqrt6$$ cm

So AH is $$8\sqrt2$$ cm and PH = $$6\sqrt2$$. What do I do now? Is the triangle HPC a right triangle?
 
Mathematics news on Phys.org
Monoxdifly said:
Given an ABCD.EFGH cube whose its side length is 8 cm. The point P is within AB so that AP = 3PH. The distance between P to AC is ...
A. $$2\sqrt3$$ cm
B. $$3\sqrt3$$ cm
C. $$2\sqrt6$$ cm
D. $$3\sqrt6$$ cm
E. $$4\sqrt6$$ cm

So AH is $$8\sqrt2$$ cm and PH = $$6\sqrt2$$. What do I do now? Is the triangle HPC a right triangle?
This sounds wrong. If P lies on AB then it must be closer to A than to H. So the condition AP = 3PH is impossible.
 
Sorry, I meant P is within AH. Sigh, why did I make a lot of typos last night?
 
My method is to use coordinates, taking the vertices of the cube as
$A = (8,0,0),$
$B = (0,0,0),$
$C = (0,8,0),$
$D = (8,8,0),$
$E = (8,0,8),$
$F = (0,0,8),$
$G = (0,8,8),$
$H = (8,8,8).$
(Of course, that is not the only way to assign the vertices. I was working from a sketch in which it was convenient to take $B$ as the origin.)

The point $P$ is then $(8,6,6)$. A point on $AC$ is given by $(t,8-t,0)$. The distance $d$ from that point to $P$ satisfies $d^2 = (t-8)^2 + (2-t)^2 + 6^2$. If you minimise that by calculus, you find that $t=5$, and $d = 3\sqrt6$.

Edit. If you don't want to use calculus, you can do it algebraically by completing the square: $$d^2 = (t-8)^2 + (2-t)^2 + 6^2 = 2t^2 - 20t + 104 = 2(t-5)^2 + 54.$$ That clearly has minimum value 54, when $t=5$. So $d = \sqrt{54} = 3\sqrt6$.
 
Last edited:
I ended up solving the problem with trigonometry instead of algebra and calculus. Thanks, anyway. It's always nice to see different approaches.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
6K
Replies
17
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K