shamieh
- 538
- 0
Find the exact length of the curve
$0 \le x \le 1$
$$y = 1 + 6x^{\frac{3}{2}}$$ <-- If you can't read this, the exponent is $$\frac{3}{2}$$
$$
\therefore y' = 9\sqrt{x}$$
$$\int ^1_0 \sqrt{1 + (9\sqrt{x})^2} \, dx$$
$$= \int ^1_0 \sqrt{1 + 81x} \, dx$$
$$
= \int^1_0 1 + 9\sqrt{x} \, dx$$
Now can't I just split the two integrals separately to obtain:
$$x + 6x^{\frac{3}{2}} |^1_0 $$ <-- If you can't read this, the exponent is $$\frac{3}{2}$$
Thus getting: $$1 + 6 = 7? $$
$0 \le x \le 1$
$$y = 1 + 6x^{\frac{3}{2}}$$ <-- If you can't read this, the exponent is $$\frac{3}{2}$$
$$
\therefore y' = 9\sqrt{x}$$
$$\int ^1_0 \sqrt{1 + (9\sqrt{x})^2} \, dx$$
$$= \int ^1_0 \sqrt{1 + 81x} \, dx$$
$$
= \int^1_0 1 + 9\sqrt{x} \, dx$$
Now can't I just split the two integrals separately to obtain:
$$x + 6x^{\frac{3}{2}} |^1_0 $$ <-- If you can't read this, the exponent is $$\frac{3}{2}$$
Thus getting: $$1 + 6 = 7? $$
Last edited: