- #1
P-Jay1
- 32
- 0
Diagonalizing an N × N matrix H involves writing it as H = UDU† where D is a
diagonal matrix, with diagonal elements equal to the eigenvalues of the matrix H, and U
is a unitary matrix.
We may write:
D=
(λ1 0 0 ... 0)
(0 λ2 0 ... 0)
(0 0 λ3... 0)
(... ... ... ... λn)
Assuming all the eigenvalues are non-zero, how do I find an expression for the inverse matrix
D^−1 in terms of λi?
And how do I prove rove that H^−1 = UD^−1U†?
For the first question I'm assuming the inverse of D is just:
D=
(1/λ1 0 0 ... 0)
(0 1/λ2 0...0)
(0 0 1/λ3...0)
(... ... ... ...1/λn)
How do I find in terms of λi?
diagonal matrix, with diagonal elements equal to the eigenvalues of the matrix H, and U
is a unitary matrix.
We may write:
D=
(λ1 0 0 ... 0)
(0 λ2 0 ... 0)
(0 0 λ3... 0)
(... ... ... ... λn)
Assuming all the eigenvalues are non-zero, how do I find an expression for the inverse matrix
D^−1 in terms of λi?
And how do I prove rove that H^−1 = UD^−1U†?
For the first question I'm assuming the inverse of D is just:
D=
(1/λ1 0 0 ... 0)
(0 1/λ2 0...0)
(0 0 1/λ3...0)
(... ... ... ...1/λn)
How do I find in terms of λi?